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Abstract—Quality assurance is crucial in the smart manufac-
turing industry as it identifies the presence of defects in finished
products before they are shipped out. Modern machine learning
techniques can be leveraged to provide rapid and accurate
detection of these imperfections. We therefore propose a transfer
learning approach, namely TransferD2, to correctly identify
defects on a dataset of source objects and extend its application
to new unseen target objects. We present a data augmentation
technique to generate a large dataset from the small source
dataset for building a classifier. We then integrate three different
pre-trained models with different network depths (Xception,
ResNet101V2, and InceptionResNetV2) into the classifier network
and compare their performance on source and target data. We
use the classifier to detect the presence of imperfections on the
unseen target data using pseudo-bounding boxes. Our results
show that ResNet101V2 performs best on the source data with
an accuracy of 95.72%. Xception performs best on the target data
with an accuracy of 91.00% and also provides a more accurate
prediction of the defects on the target images. The results also
indicate that the choice of a pre-trained model is not dependent
on the depth of the network. Our proposed approach can be
applied in defect detection applications where insufficient data is
available for training a model and can be extended to identify
imperfections in new unseen data.

Index Terms—Transfer Learning, Smart Manufacturing, De-
fect Detection, Deflectometry Data, Data Augmentation, Product
Quality Assurance

I. INTRODUCTION

The manufacturing industry is rapidly shifting to the new
revolution wave (e.g., Industry 4.0 in Germany, Industrial
Internet in the US) with many disruptive technologies that
support effective and accurate engineering decision-making
through the convergence of a vast amount of networked data
and emerging technologies such as Internet of Things, Cyber-
Physical System, Edge Computing, Advanced Analytics and
Al for governing and operating manufacturing operations.
Many companies today are optimizing their systems by adopt-
ing more automated systems in their product manufacturing
processes in preference to using human resources. Product
quality assurance is one of the stages that are being drastically
transformed into automation in the manufacturing process.

979-8-3503-4647-3/23/$31.00 ©2023 IEEE

With the appearance of advanced techniques in machine vi-
sion, many product imperfections can be quickly and precisely
detected without the task of judging by the human eye. In
some cases, conventional machine vision systems can increase
manufacturing efficiency and provide more accurate quality
inspection with the support of several special sensors. Some
examples of surface defect detection applications are Printed
Circuit Board (PCB) defect detection [1], leather defect clas-
sification [2], and steel defect detection [3].

In this work, we aim to solve complex quality inspection
problems within the manufacturing industry through the ap-
plication of customized deep learning models that leverage
machine vision and process data, combined with advanced
image processing and data standardization pipelines, to predict
the existence and location of relevant quality defects. Using the
deflectometry technology developed by our industry partner,
a wide range of objects with specific defects can be detected
in multiple applications. Figure 1 depicts several examples of
paint inspection images applied to this technology to different
objects.

Fig. 1. Paint inspection images obtained with deflectometry inspection
technology for three different objects.

Although the current inspection technology has been proven
to work, it is inefficient when trying to scale an existing
solution to new applications with new objects. A primary chal-
lenge when developing solutions for new applications, which
may include new part geometries, new camera perspectives,
additional defects, and other process changes, is ensuring ma-
chine learning (ML) model robustness and reliability without
the need for collecting excessively large labeled datasets that
deter adoption and prolong return on investments. To overcome
this challenge, it is necessary to have a solution that does
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not require too much labeled input data but still ensures the
accuracy of the trained ML model when applied to the defect
identification of new objects. This requires leveraging the
results of the previous solution to transfer knowledge to a
new and similar application (ie. model architecture, trained
models, labeled datasets). A relevant example of this challenge
is paint inspection where the inspection images have well-
defined features associated with specific defects (eg. scratches,
contamination, paint runs, etc.) but the wide range of part
geometries, colors, material, and variation in part placement
present difficulties in successfully scaling a solution to new
applications with new objects.

The primary objective of this research project is to identify
the relevance of leveraging transfer learning techniques and
synthetic data approaches to minimize the necessity for large
labeled datasets at the start of each new application on new
objects. By using transfer learning, we aim to get a high
accuracy level on the imperfection detection of new objects
when we only use the learned knowledge and a limited amount
of data from the initial objects.

The main contributions of this work are as follows:

1) We propose an end-to-end approach, namely Trans-
fer Defect Detection (TransferD2) to leverage different
transfer learning models through an architecture design
for product defect detection applications in the context
of smart manufacturing.

2) We devise a method to process the original small dataset
and augment the data records to produce appropriately
large labeled datasets that are suitable for training robust
ML models.

3) We also experiment with different sets of transfer learn-
ing models representing 3 depth levels of neural network
architecture (i.e., network depth level ~ 100, ~ 200, ~
400) and compare the performance of these models.

The remainder of this paper is as follows. Section II
describes the related work of product defect detection in smart
manufacturing applications and the state-of-the-art transfer
learning techniques. Section III presents our proposal for prod-
uct quality assurance and imperfection detection leveraging
transfer learning methods. Section IV realizes our proposed
approach through the implementation of a practical application
on a real dataset. The evaluation and performance of our
proposed approach are discussed in Section V. Finally, we
conclude our paper in Section VI.

II. RELATED WORK

This section discusses the state-of-the-art works related to
the imperfection detection application in the manufacturing
industry. We also discuss several related transfer learning
approaches in the context of smart manufacturing.

A. Smart Manufacturing

Extensive research has been done on integrating deep learn-
ing techniques in various areas of smart manufacturing, such as
product quality inspection, fault diagnosis, and defect progno-
sis [4]. In our paper, we explore product quality inspection and

focus on surface defect detection. This research area leverages
image processing techniques and computer vision to classify
and localize defects on the surface of materials.

One of the major challenges faced by deep learning in
surface defect detection has been the lack of large amounts
of training data necessary for training deep learning models
[5]. Several authors have explored various approaches to
deal with this challenge. For example, Tabernik et al. [6]
proposed a segmentation-based architecture for the detection
and segmentation of surface defects. In their method, each
pixel of the surface defect was considered a training sample,
thereby increasing the amount of training data available. In
another work [2], the authors had 27 sample images of leather
surface defects. They proposed a method to split each image
into 24 smaller ones but manually selected images such that
each image only contained one defect. Another research [3]
proposed generating synthetic data for steel defect detection
using rendering software to re-create the images. The images
were shifted to be viewed from different angles, and shader pa-
rameters were altered to vary the defect shapes and locations.
Jain et al. [7] also proposed using a Generative Adversarial
Network to generate synthetic data for surface defect detection.
They used a generator network to produce realistic synthetic
images, which were then used to train their classifier.

The nature of modern manufacturing systems provides flex-
ible configurations for producing a wide variety of products.
Using traditional machine learning methods poses a challenge
as the feature representations will need to be redesigned from
scratch. To overcome the challenge of domain shift, several
transfer learning techniques have been proposed.

B. Transfer Learning

Transfer learning has emerged as a popular deep learning
approach in which knowledge from a source domain is ap-
plied to a target domain to improve training performance.
This approach has become popular in applications in which
extensive training data are not available to build a model from
scratch. By using transfer learning, the parameters from the
pre-trained model can be adjusted to suit the new domain
which provides faster convergence than would have been
achieved from random weight initialization when training from
scratch.

A popular source domain for transfer learning has been the
ImageNet dataset. Many deep learning models developed for
this dataset have become base models for transfer learning in
various applications such as in garbage classification [8], fault
detection in rail components [9], and fault diagnosis [10].

Specific to smart manufacturing, several frameworks have
also been proposed that build upon transfer learning. Zhu et
al. [11] used transfer learning to build a model that could
detect bridge defects in a dataset of images not used during
training. They used InceptionV3 as a feature extractor and built
a classifier network on top of the base model. Gong et al. [12]
proposed a deep transfer learning method to identify defects
in aeronautics composite materials. They trained the labeled
images of their source and target data together by feeding
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image pairs consisting of both images from both datasets as
image pairs, thereby providing sufficient input data for training
their model.

The choice of the base model when building a classifier for
a new dataset plays an important role [5]. Abu et al. [13] did
a comparative study on the performance of ResNet, VGG,
MobileNet, and DenseNet on the SEVERSTAL and NEU
datasets. They used transfer learning to train the models on
these datasets and found MobileNet to be the best-performing
model. In another study with a different dataset [14], the re-
searchers found Xception to be the most performant model on
the Environmental Microorganism Image Dataset (EMDS-6)
dataset. Another work [5] chose ResNet-18 as the base model
of their study due to its relatively simple implementation and
high performance. This proves that there is no clear metric in
selecting the base model for implementation.

ITII. PROPOSED METHOD
A. Overview approach

The detection of surface defects can be considered a binary
image classification problem [6], in which the image analyzed
is either defective or non-defective. Emphasis should therefore
be laid on identifying features that enable the model to
correctly classify an image as defective or not. This implies
irrelevant features such as the object’s shape, size, and color
should be given less importance in the classification of the
image. As such, a model trained to correctly identify surface
defects on a specific object will therefore have a significant
performance when identifying defects on a new object, irre-
spective of shape, size, or color.

We propose an approach, as shown in Figure 2, that is
divided into two phases: a classification phase and a detection
phase. In the classification phase, we build a binary classifier
that identifies if an image is defective or not. The detection
phase then uses the classifier to run inference on new data and
identify the defective segments of the image. We explain both
phases in detail in the following subsections.

B. Classification Phase

The execution of an accurate classifier is the most crucial
step in our proposed approach. The classification phase is
further broken down into Data Pre-processing, Dataset Aug-
mentation, and Training and Building of Learning Models
stages.

1) Data Pre-processing: Data pre-processing provides the
basis for building the classifier’s dataset. In this stage, each
image in the source dataset is split into smaller tiles, and the
tiles are labeled as defective or non-defective.

The image is split into a grid of m columns and n rows. Tiles
are labeled as either defective or non-defective by verifying if
they contain a defect. If the coordinates of the defect on the
original image overlap or lie within the coordinates of the tile,
that tile is marked as defective. Otherwise, the tile is marked as
non-defective. The Label, Source Image ID, and x and y values
of the tile are used to save the tile as an independent image in
the new dataset (where Label = 0 for non-defective and Label

= I for defective), thereby providing a unique file name for
each tile. Algorithm 1 presents the procedure to pre-process all
images in the source dataset, S and generate a new augmented
dataset, E by cropping the original images and splitting them
into labelled tiles. Specifically, each original source image in
the pre-processing stage is split into a grid of m columns and
n rows, and each tile is saved as a new image. This implies
that each original source image produces m*n tiles that are
saved as independent images.

Algorithm 1 Dataset Pre-processing
Input: Source Dataset, S
Output: Augmented Dataset, E

Let E be an empty dataset
for img € S do

img < crop(img)

for i + 0,m do

1:

2:

3

4 > m columns
5: for j < 0,n do

6

7

8

9

> N rows
tile < imgli : j]
if tile has defect then

label + 1

: E + tile, label
10: else
11: label < 0
12: FE <« tile,label
13: end if
14: end for
15: end for
16: end for

Consider a source dataset of N images. After pre-processing
all the images in the source dataset, we obtain a new dataset
of size E = N*m*n images and their corresponding labels (0
for non-defective and 1 for defective). The detailed implemen-
tation for this procedure is explained in Section I'V-B.

The classifier’s performance depends on its identification of
crucial features of the image, which include the defect itself
and its surroundings. The classifier is trained to learn features
that identify if a tile is defective or not rather than learning
the general features of the object itself. Hence, splitting the
image into tiles provides a basis for the generalization of the
classifier on a dataset with unseen and unlabelled images.

2) Dataset Augmentation: Defects occupy a small area of
the image, and defective images will, therefore, provide a sig-
nificantly smaller percentage of the images in the new dataset
E. Such data imbalance will result in poor model performance,
as stated in [8], as training will be biased towards the class with
a more significant number of samples [15]. Several methods
have been proposed to solve the data imbalance problem,
such as an even-odd mechanism to balance the defective and
non-defective samples [6]. In [16], the authors evaluated the
performance of classifiers for undersampling and oversampling
and observed that oversampling had better results.

We therefore use an even-odd mechanism to select images
and oversample the class of defective images randomly for
better results. Algorithm 2 illustrates our approach to obtain
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Fig. 2. The proposed methodology for product imperfection detection using Transfer Learning.

a balanced dataset D from an augmented dataset E in the
previous stage. At even iterations, random defective samples
are selected and randomly rotated or flipped to avoid repetitive
images that could lead to overfitting. The same approach is
used to select random non-defective samples at odd iterations.
This process results in the oversampling of defective images
and the undersampling of non-defective images. Extensive
training data is required to tune the parameters of the trans-
fer learning model; therefore, we iterate the data balancing
process over the size of the imbalanced dataset to produce
a balanced dataset of the same size. The resulting dataset is
evenly balanced with an equal number of defective and non-
defective samples. The images are assigned to their respective
classes, that is, O for non-defective samples and 1 for defective
samples, and the dataset is then split into the training and
validation datasets.

Algorithm 2 Dataset Augmentation

Input: Augmentation Dataset, E
Output: Balanced Dataset, D
1: Let D be an empty dataset
2: Let class 0 be an empty set of non-defective tiles
3: Let class 1 be an empty set of defective tiles
4: for index, tile,label € E do
5 if index is even then
6 select tile with label = 1
7: randomly rotate or flip tile
8 assign tile to class 1
9

else
10: select tile with label = 0
11: randomly rotate or flip tile
12: assign tile to class 0
13: end if
14: end for

15: D < Class0 + Classl

3) Training and Building of Learning Models: Transfer
learning has been proven to be beneficial over training a

model from scratch [17] by making use of predefined weights
from the pre-trained model. These predefined weights are then
adjusted to learn features on a new dataset [17], thereby saving
computational time required to train a model from scratch with
random weight initialization.

Our proposed approach uses transfer learning to build the
classifier network on top of a model whose weights are pre-
trained on the ImageNet dataset. The classifier network con-
sists of an average pooling layer, a dropout layer, and a dense
output layer with two neurons (for binary classification) and a
sigmoid activation function. To obtain better performance, the
entire network is trained end-to-end, and binary cross entropy
is used as the loss function.

C. Detection Phase

The saved transfer learning models are then loaded for
inference on the target dataset containing unlabelled images
of different objects. The classifier is trained to classify tiles
from input images and not the entire image itself. As the
classifier is built using a sigmoid function, it returns prediction
values within the range of 0 to 1. The closer the prediction
is to 0, the more likely it is to be a non-defective image,
and the closer the image is to 1, the more likely it is to be
a defective image. This implies that prediction values greater
than 0.5 are considered defective and vice versa. To prevent the
mislabelling of defective tiles, the prediction threshold should
be kept suitably higher than 0.5.

A sliding window is used to split the image of the new
object from the target dataset into a grid of tiles, and each
tile is input into the classifier for prediction. The result of the
prediction is then used to determine if the tile is defective or
not, as described above. Defective tiles are then flagged and
bounded by a rectangle on the input image, thereby providing
pseudo-object detection.

IV. IMPLEMENTATION

A. Deflectometry and data acquisition

Deflectometry inspection systems use synchronized pat-
terned lighting and image capture, combined with image
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processing and deep learning, to inspect high gloss parts for
surface and subsurface defects. Here, 16 black and white pat-
terned images are shown on a digital display, a Flir BFS-PGE-
27S5M-C monochrome camera captures the 16 corresponding
images of the pattern reflections on the part surface, and
deflectometry image processing generates a single processed
image that clearly shows the defects. This inspection is re-
peated multiple times for each unique part and the resulting
processed images are annotated to identify all scratch and
dirt/contamination defects visible in the image.

The resulting dataset contains 227 black and white images
of a source object and defect annotations that define the
type of defect and their bounding boxes. As mentioned in
Section III-A, we focus on a binary classification problem and
therefore ignore the different classes of defects.

B. Data Pre-processing

The source dataset contains images and the corresponding
defect annotations. As seen from Figure 3, the object is
bounded within a black background, which is irrelevant for
the classifier. Canny edge detection provides a better method
of background removal over fixed cropping due to the varying
shape of the objects in the image. With canny edge detection,
an image box is dynamically identified based on the object’s
edges, and the resulting box is used to crop the image.
In contrast, cropping with a fixed box fails to take into
consideration the dimensions of the object and crops out parts
of the object that fall outside the prescribed cropping range.

The image obtained from cropping has different dimensions
from the original image, and therefore, the annotations must be
mapped to the new image. The location of pixels on an image
is referenced from the image’s origin coordinates. Cropping
does not modify the distance of the pixels from the origin,
but rather re-assigns a new point of origin. Therefore, the
coordinates of the annotated pixels can be mapped to the new
image by calculating new coordinates based on the cropped
image’s new point of origin. The new image’s defects are now
mapped from the re-assigned annotation values.

Augmented Subset

Source Image

Cropped Image Annotated Image Gridded Image

Fig. 3. The proposed method for dataset augmentation

C. Dataset Augmentation

For each image in the dataset, the black background is
cropped out to prevent having a dataset of redundant black
images. The annotations are mapped onto the cropped image
as shown in Figure 3 (Note that the boxes and grid are only

for demonstration purposes). The cropped image is divided
into a 10x10 grid whose tiles become the images of the new
dataset, thereby generating 100 labeled images for the new
dataset. Each tile is labeled as either O for non-defective or 1
for defective and assigned a unique file name that includes its
label for easy identification.

Applying the process above on all the images in the source
dataset generates a dataset of 22,700 images containing both
the defective and non-defective classes. However, the dataset
was heavily imbalanced, with 1,609 images in the defective
class and 21,091 images in the non-defective class. The even-
odd approach to data balancing mentioned in Section III-B2
generated a balanced dataset with 11,350 images in each of
the classes (22,700 images in total). To train and evaluate the
model, the dataset is split into the training, validation, and test
datasets in the ratio 8:1:1. The dataset obtained consists of a
training set of 18,160 images, a validation set of 2,270 images,
and a test set of 2,270 images.

D. Transfer Learning Model Design

The success of transfer learning approaches lies in the
choice of the base model selected [5]. The depth of the
network plays an important role in the accuracy of the CNN,
as deeper networks extract more complex features about the
dataset. In our implementation, the selection of the base model
depends on the depth of the network. We choose a pre-trained
model from each of the following three classes of models:
network depth level ~ 100; ~ 200; and ~ 400 to evaluate our
approach. Figure 4 illustrates the architecture of our network.

iaput. | [(None, 23
output: | [None, 25

Xception Architecture

nput. | (None, 256,256, 3
output: | (None, 256.

(a) The general Xception architec-
ture

| — Ve imput: | (None, 256, 256, 3)

‘Functional | output: | (None, 8, 8, 2048)

|
|
|
| [ clobalaverage_poolng2d | nput | one, 3,5, 2045) |
I
I
I
I

[ GlobalAveragePooling2D louqml [ (None, 2045)

,,,,,,

ResNet101V2 Architecture

(b) The general ResNet101V2 archi-

tecture

(d) The Transfer Learning architec-
ture

InceptionResnetV2 Architecture

(c) The general InceptionResNetV2
architecture

Fig. 4. The proposed architecture design for training 3 different Transfer
Learning models
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In our first class of the base model, we choose Xception
[18] with 81 convolution layers. Xception is inspired by the
Inception model but is more lightweight and offers better
performance (79.0% Top-1 Accuracy on the ImageNet dataset)
[18]. In our second class of the base model, we choose
ResNet101V2 [19], with a network depth of 205 layers.
ResNet101V2 is part of the residual family of networks that
are easy to train and whose accuracy increases with an increase
in depth. The model achieved a Top-1 Accuracy of 77.2% on
the ImageNet. In our final class of the base model, we choose
InceptionResNetV2 [20], with a network depth of 449 layers.
InceptionResNetV2 combines the Inception architecture and
residual connections, which significantly improves the training
of the Inception networks. The model achieved 80.3% Top-1
Accuracy on the ImageNet dataset.

Our network consists of an input layer, a rescaling layer,
the functional base model, a global average pooling layer, a
dropout layer, and an output layer. The shape of the image
(fixed for all images) is specified as the parameters for the
input layer. The range of the input image’s pixel values is
converted from [0,255] to [-1,1] in the rescaling layer. This
normalization ensures that large pixel values are not given
more importance over smaller pixel values during weight
updates. The output of the rescaling layer is connected to the
input layer of the base model. The base model then serves as a
feature extractor, and its pre-trained weights provide the basis
from which information can be learned about the new dataset.

During feature extraction, all features are mapped to their
corresponding feature space in a convolutional process. How-
ever, the convolution does not differentiate between relevant
and redundant features, resulting in a large feature space. The
authors in [21] proved the effectiveness of global average pool-
ing in reducing redundant features. Another work [22] proved
that the classification performance of global average pooling
was similar to that of global max pooling, but performed
better on the localisation of features. This advantage provides a
necessary foundation for future work involving more localised
bounding boxes of the defects.

During training, the model is prone to overfitting on the
training dataset as some settings of weights can perfectly
predict the output but fail to predict correctly on the validation
data. The authors in [23] proposed a dropout layer to overcome
this deficit. By introducing this layer, some neurons are
randomly omitted from the network and cannot be depended
upon for weight update. The prevention of this strong co-
dependency between neurons thus prevents overfitting.

The output of the network is passed through a sigmoid
activation function in the output layer. The sigmoid function
returns the prediction as a probability value between 0 and
1. Output values closer to zero represent predictions of the
non-defective class, while predictions closer to 1 represent the
defective class.

An identical network is repeated for all three base models,
maintaining the overall architecture but only altering the pre-
trained model. The model is then trained and fine-tuned for
50 epochs and saved for inference in the Detection Phase.

E. Defect Detection

During inference, a random image is loaded from the target
dataset. The image is split into an equal number of tiles as
specified during the pre-processing step. A sliding window
selects individual tiles and passes them one by one into the
model for prediction. A threshold value of 0.7 is assigned to
determine if the prediction should be classified as defective
or not. As greater importance is given to correctly classifying
defective tiles, we set the threshold to be comfortably higher
than 0.5 but not too high, as it could miss out on the
classification of some images.

A bounding box is drawn over the defective tiles on the
overall image providing a pseudo-object detection. We discuss
the results of the defect detection in Section V.

V. RESULTS AND DISCUSSIONS
A. Evaluation Metrics

The choice of several metrics provides a more robust,
accurate comparison as one classifier could perform well on
a single metric and poorly on a different metric [24]. We
therefore evaluate the performance of our classifiers using
binary accuracy, precision, recall, F1 Score, and AUC.

The accuracy gives the ratio of correct classifications of the
model. Accuracy is obtained by comparing the predicted label
against the ground truth label. A model with high accuracy
correctly predicts the label of the image majority of the time.
In evaluating the performance of a classifier, we also want
to know the fraction of relevant instances out of the total
number of predicted instances (precision) and the fraction of
relevant instances that were correctly predicted out of the total
relevant instances (recall). The precision gives the fraction of
true positives against the number of predicted positives (i.e.,
the sum of true positives and false positives). Recall gives the
fraction of true positives against the number of actual predicted
positive instances (i.e., the sum of true positives and false
negatives).

A simple measure of the precision and recall of different
classifiers could be misleading as a classifier may have better
precision and worse recall as compared to another classifier.
We therefore use the F1 Score of the models to provide a more
accurate comparison of the classifiers. The F1 Score measures
the harmonic mean of precision and recall. It provides a
reliable metric for evaluating classifiers on a balanced dataset
[25].

The AUC (Area Under the ROC Curve) provides an alter-
native measure of performance in the absence of a confusion
matrix [25]. It evaluates all possible classification thresholds
of a model, thereby giving an accurate quality measure of the
classifier.

B. Evaluation on the Source Dataset

The summary of the feature extraction accuracy and loss
during the training phase is shown in Figure 5.

The results show that the accuracy of the Xception (network
depth level ~ 100) and ResNet101V2 (network depth level ~
200) models increased rapidly and converged faster than the
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Fig. 5. Results of feature extraction accuracy and loss for the transfer learning
models

InceptionResNetV2 (network depth level ~ 400) model during
the training phase, while the training loss of the Xception
and ResNet101V2 models drop significantly faster than the
training loss of the InceptionResNetV2. This phenomenon is
interesting because although the InceptionResNetV2 model
had the highest network depth, it performed more poorly than
the other two models. This result proves that the choice of
the base model for a transfer learning architecture does not
depend on the network’s depth.

After fine-tuning for better performance, we evaluate the
results of the models on the test dataset consisting of 2,270
images and present the results in Table I. We can observe
that the ResNetl01V2 model had the best performance
with accuracy 95.72% and also outperformed Xception and
InceptionResNetV?2 in recall, F1 score, and AUC. It is only
surpassed by InceptionResNetV2 in precision (95.41%).
InceptionResNetV2 also has a better performance than
Xception across the metrics. We observe that the accuracy of
each model is similar to its F1 score. This is due to the fact
that the models are trained on a balanced dataset.

1) Evaluation on the Target Dataset: For the evaluation of
our approach on unseen target data, an image is split into a
10x10 grid producing 100 new images. Each resulting tile is
manually inspected for the presence of defects and assigned to
its corresponding class, that is, 0 for non-defective and 1 for
defective. We produce an evaluation dataset of 100 images by
this approach and evaluate the performance of the pre-trained
models. The results are illustrated in Table II. We observe that
the Xception model performs better than the two other models
with an accuracy of 91.00% and also a better precision, F1
Score, and AUC. Xception is only surpassed by Resnet101V2
in recall.

C. Defect Detection

We discussed the defect detection phase in Section III-C
and Section IV-E. We now evaluate the results of the defect
detection on two images in our target dataset. We compare the
results of the pseudo bounding boxes predicted by the transfer

learning models on two new unseen target objects and present
the results in Figure 6.

(a) Xception (b) ResNet101V2 (c) InceptionResNetV2

(d) Xception

(e) ResNet101V2 (f) InceptionResNetV2

Fig. 6. Result of defect detection using three different models on two new
unseen target objects

The consistent performance of Xception on the unseen
target objects is visible in the pseudo-object detection, where
it correctly identifies more defective tiles (by visual inspec-
tion) than ResNetl01V2 and InceptionResNetV2. Although
InceptionResNetV2 has better accuracy, precision, and F1
score than ResNet101V2 (as seen in Table II), in practice,
ResNet101V2 performs better than InceptionResNetV2. The
performance of InceptionResNetV2 is significantly poor on
the defect detection.

We conclude that the ability of the model to better extract
features is crucial for its inference on the target images,
irrespective of its performance after fine tuning. The results
also justify the success of our data augmentation approach as
both Xception and ResNet101V2 are able to extract relevant
features about the source images from the augmented dataset.
Knowledge about these features is then transferred to the target
dataset and used for inference on the new images.

VI. CONCLUSIONS

Machine learning techniques have an important role in the
smart manufacturing industry and have been well-embraced as
a solution to many of the existing challenges in the domain.
The identification of product imperfections is a crucial process
in the manufacturing industry. Smart manufacturing makes use
of machine learning techniques to facilitate efficient and rapid
identification of these defects. However, the process is limited
by the unavailability of large amounts of data required for
model training.

This paper proposed an architectural design that leverages
transfer learning models for product defect detection applica-
tions with the goal of automating the quality assurance process
in modern manufacturing. We also presented a method to
augment a small dataset to produce a sufficiently large dataset
for training the models. We built an augmented dataset of
22,700 labeled images from a source dataset containing 227
annotated images. We then used transfer learning models to
build a robust classifier from the augmented dataset that could
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TABLE I
PERFORMANCE OF TRANSFER LEARNING MODELS ON TESTING DATA

Model Network Depth Level | Accuracy Precision Recall F1 Score AUC
Xception ~ 100 0.9502 0.9436 0.9577  0.9506 0.9746
ResNet101V2 ~ 200 0.9572 0.9505 0.9647  0.9575 0.9758
InceptionResNetV2 ~ 400 0.9542 0.9541 0.9541  0.9541 0.9712
TABLE 11
COMPARISON OF MODEL PERFORMANCE ON NEW UNSEEN TARGET OBJECT
Model Network Depth Level | Accuracy Precision Recall F1 Score AUC
Xception ~ 100 0.9100 0.5385 0.7000  0.6087 0.9128
Resnet101V2 ~ 200 0.7800 0.2857 0.8000 0.4210 0.8883
InceptionResNetV2 ~ 400 0.8700 0.3846 0.5000  0.4347 0.7833

accurately predict the presence of defects on industrial ob-
jects. We found that ResNet101V2 outperforms Xception and
InceptionResNetV2 on our source data, with an accuracy of
95.72%. However, Xception produced better results (accuracy
of 91.00%) than the other two models when tested on unseen
target objects. From our results, we also inferred that the
choice of a pre-trained model is not dependent on the depth
of the network.

The success of our approach is justified by the significant
performance on both the source dataset and a target dataset
containing unseen and unlabelled images. This supports the
conclusion that our proposed method can be implemented
on defect detection applications with limited source data
available, and the knowledge learned can be extended to new
unseen data. Our proposed approach is currently limited to the
datasets discussed in this paper. However, future work can be
extended by applying the method to different defect datasets
and evaluating the results.
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