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Abstract—IIoT sensors are usually deployed on a massive
scale with stringent scalability, modularity, and interoperability
requirements. It is indisputable that they produce a large amount
of high-speed and heterogeneous data streams that pose many
challenges to perform management, processing, and analytical
tasks. This paper proposes an integrated edge-cloud continuum
platform that can harvest IIoT data streams from a variety of sen-
sors deployed at a remote RF site; and can harmonize different
machine learning models for diagnosing problems that enhance
infrastructure monitoring and long-term structural resilience. A
real-world experiment was carried out to evaluate the proposed
platform for supporting a self-diagnostic process for intelligent
maintenance of Land Mobile Radio (LMR) infrastructures.

Index Terms—cloud computing, edge computing, Land Mobile
Radio Systems, Industrial Internet of Things, streaming analytics,
intelligent maintenance

I. INTRODUCTION

Industrial IoT (IIoT) is a branch of IoT that integrates
the domains of machine-to-machine (M2M) and automation
applications with industrial communication and sensing tech-
nologies [1]. Due to the legacy of industrial systems, the
IIoT applications are usually developed on top of a tradi-
tional infrastructure, targeting at analytics such as predictive
maintenance and improved logistics. Some noticeable IIoT
applications include smart logistics, smart factories and man-
ufacturing, and remote maintenance [2].

Traditionally, IIoT sensor data is streamed and offloaded
to a large shared pool of network, storage, and computing
resources that can provide on-demand processing services
that are released through a selection of cloud architectures
(e.g. Private, Public, Community, and Hybrid Cloud) [3].
Knowledge and insights can be yielded through a training
and inference process using current machine learning models
running on the virtually unlimited resources of the cloud [4].
However, this approach is only suitable for delay-tolerance
applications [5], since the long transmission distance between
centralised cloud data centers and IIoT sensors can generate
a delay overhead and bandwidth consumption.

Recently, the edge computing paradigm has been leveraged
to alleviate the network burden of transporting IIoT data to
the cloud [6]. Edge computing resources include edge servers
(cloudlets), edge accelerators, and edge gateways [7], which
are referred to as edge nodes in this paper. By bringing
edge nodes in proximity to IIoT devices, latency and network

bandwidth consumption can be considerably reduced due to
the edge decentralisation nature; and IIoT data streams can be
pre-processed and analyzed in part or in whole at the edge
nodes, optimizing the existing legacy cloud resources.

However, edge nodes, in practice, have less storage capacity
and computing power than the centralised cloud data centers.
Therefore, leveraging only edge nodes may not be a suitable
solution to support the diversity of computing and storage
requirements of IIoT applications. The research challenge is
to develop architectural frameworks capable of integrating
edge and cloud resources that are necessary to fulfill the
diversified and rigorous requirements of IIoT applications,
aiming to unlock hidden value of IIoT data streams and deliver
intelligence to innovative business models and services.

Towards this end, this paper proposes an intelligent platform
based on the widely accepted three-tier architecture, i.e. sen-
sors, edge nodes, and cloud, which are are connected by their
geographical proximity and network access. The goal is to
develop a new automated data workflow capable of performing
remote monitoring and sensing of critical infrastructures by
powering IIoT sensors with continuously integrated machine
learning models, running at both edge and cloud resources.

The proposed platform is evaluated using real-world IIoT
data for self-diagnostic of Land Mobile Radio (LMR) systems,
which are characterised by unique functional designs and
operations, having key strengths such as power, resilience, and
purpose-built devices for supporting critical operations such
as paging firefighters, dispatching fleets of trucks, navigating
ships and aircraft, and communicating on police radios.

The scientific contributions of this paper are as follows:
• Our research work is unique in proposing an edge-

cloud intelligence approach to achieve an automated self-
diagnostic process by combining edge and cloud analyt-
ics for generating early warnings based on discovered
patterns about problems before they become failures.
Previous research work related to remote monitoring
telecommunications infrastructure has been focused on
cell outage and sleeping cell phenomenon, which are the
main causes for access failure in mobile networks.

• Since intelligent maintenance is revolutionizing every
aspect of industrial processes, we propose a new auto-
mated data workflow capable of harmonizing different
machine learning models that collaborate for an auto-



mated self-diagnostics of LMR systems. Real-world IIoT
data streams of seven remote sites are used to validate
the proposed workflow.

The remaining of this paper is organized as follows. In Sec-
tion 2, previous research work is described. Section 3 describes
the proposed self-diagnostic analytics in IIoT. Section 4 pro-
vides an overview of the implementation and the experiment
used for collecting real-world IIoT data. In Section 5, we
discuss the preliminary results. Finally, Section 6 concludes
and indicates future research work.

II. RELATED WORK

The most basic maintenance approach is reactive mainte-
nance, which comes into play when the equipment is broken
and needs to be fixed [8]. Preventive maintenance is another
approach that replaces the equipment based on their expected
lifetime, regardless of their condition. Both types of main-
tenance deemed to be inefficient and costly since they might
replace parts still in good operating conditions or with machine
failures [9].

Previous research work related to reactive and preventive
maintenance has been focused on the purpose of remote mon-
itoring telecommunications infrastructures. Problems happen
silently and immediately affect network performance, making
failures very difficult to detect. Manzanilla-Salazar et al. [10]
proposed a solution using Key Performance Indicators (KPIs)
to detect failures, but they were only able to validate the
proposed approach using simulated data from the location of
base stations and IIoT devices.

The recent innovations in the IIoT, edge, and cloud tech-
nologies are fostering new developments towards intelligent
maintenance [8]. A number of edge hardware accelerators
such as Google Edge TPU, NVIDIA Jetson Nano Edge GPU,
Apple’s Neural Engine, Intel Vision Processing Unit (VPU)
has recently emerged with the specific goal of supporting edge-
based AI [11]. With an improved normalized performance,
these edge resources are paving the way for a proliferation of
edge intelligence in the near future [7].

Based on the path length of data offloading, Zhou et
al. [12] describe the operation workflows into Edge2Edge,
Edge2Cloud, Cloud2Cloud, and Cloud2Edge; where training
and inference of machine learning models have been primarily
focused on using cloud-based resources and gradually moving
towards the edge. Moreover, Garcia et al. [13] applied an
ensemble approach that combines several supervised machine
learning algorithms such as SVM, ANN, Random Forest,
and Naive Bayes to identify and prioritize alarms for fault
management in cellular networks. This work has been done
offline using an alarm data set provided by a network operator.

Therefore, intelligent maintenance plays an important role
in the functionality and performance of Land Mobile Ra-
dio (LRM) systems [14]–[16]. LMR systems generate large
amounts of operational data and system alarms on a daily
basis. Most of these vital data go unused and require sending
a technician out to investigate every alarm manually. This
not only incurs the cost of additional truck rolls but also

lost revenue during system downtime. Therefore, a remote
monitoring solution must address the transmitter site shelter,
the transmitters themselves, and the antenna system. It must
provide visibility to each site and its critical components,
so that management can better ensure telecommunications
reliability by identifying and resolving problems in advance
before they become failures [17], [18].

To best of our knowledge, our research work is a first at-
tempt towards an intelligent management approach by devising
an automated self-diagnostic process based on the ensemble of
different machine learning models where automated tasks are
performed on IIoT data streams available at edge and cloud
resources.

III. SELF-DIAGNOSTIC ANALYTICS IN IIOT

A. IIoT Stream Data Lifecycle

IIoT data streams can be categorized into two types: ac-
cumulated data streams and continuous data streams [3],
[19]. Accumulated data streams are transmitted from the IIoT
sensors to an edge or cloud resource, and the data tuples
are accumulated using the sliding time window model until a
workflow task is triggered or finalized. In contrast, continuous
data streams are active incoming data tuples which require to
be processed immediately when they arrive at an edge or cloud
resource. Although continuous data streams do not required
high cost of storing the data as accumulated data streams,
they tend to use more processing power to run computations.

The types of raw IIoT streams include time-series (i.e.
recorded timestamped readings at successive and equal time
intervals) and event triggered data (i.e. recorded timestamped
readings when a sensors are triggered due to an activity).
In our proposed automated data workflow, the results of one
workflow task are also the input for the other workflow tasks.
We also anticipate that raw IIoT data streams are usually small
in volume at the edge, and they can be subject to LMR system
requirements that prevent data from being moved to a cloud,
especially when natural disasters and incidents occur.

Therefore, a stream data lifecycle is supported in the
proposed platform to: (1) continuously analyze and monitor
incoming data tuples aiming to detect problems and understand
them; (2) understand component or system behavior under
a variety of conditions to constantly enhance further the
current component or system; and (3) trigger specific actions
to respond to changes when certain thresholds in the system
are identified.

B. Computational Resources

The platform encompasses the edge-cloud continuum as
shown in Figure 1. The main components can be described
as follows:

• Sensors that can be proprietary or commercial-off-the-
shelf (COTS). They usually generate IIoT data streams
at different data rates and accuracy levels. They moni-
tor some phenomenon, sending their observations with
uplink communications from sensors to controllers, and
downlink communications from controllers to actuators.
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Fig. 1. Overview of the edge-cloud resources

• Edge Nodes which are continuously harvesting IIoT data
streams and diagnosing what is currently happening with
a remote site of an LMR infrastructure. Edge Intelligence
provides information to diagnose the occurrence of a
problem at the transmitter site shelter, the transmitters
themselves, or the antenna system that might lead to a
failure in LMR systems.

• Cloud resources are devised to support storage, com-
pute engine, data flow management, network connection,
analytics, and visualization. Cloud Intelligence can be
explored to diagnose a problem at the network level of
LMR systems.

We assume that communications between the resources are
hierarchical: only sensors can communicate with the edge
nodes, and only edge nodes can communicate with the cloud.
Some edge nodes are expected to work together in parallel
to make sure that the service is always on. Other edge nodes
in the network play the role of both publisher/producer and
subscriber/consumer. All data streams will be passed through
the broker and they will be filtered and sent to the correct
destination. Several protocols such as the binary protocol over
TCP (Apache Kafka), MQTT (RabbitMQ) and MQTT-SN
(MQTT for Sensor Networks) can be used to deploy our
architecture.

C. IIoT Automated Data Workflow

Figure 2 provides an overview of the automated data
workflow that is devised for supporting an automated self-
diagnostic process. The sensing phase is rendered operational
by a communication network that collects and exchanges use-
ful data tuples to fully leverage the advantages of IIoT sensors.
Energy-efficient and low-complexity security are required for
supporting LMR IIoT sensing applications.

In the data ingestion phase, two main tasks are devised.
First, the data control task aims to ensure secure remote access
to the IIoT sensors and resolve troubleshoot issues. It is also

designed to view and download sensor logs, and reset sensor
state. Second, the data filtering task is used to filter and throttle
data streams to reduce system bandwidth and minimize pre-
processing and storing unneeded data tuples at the edge node.

The pre-processing phase is focused on performing pre-
processing tasks on both accumulated and continuous IIoT
data streams. The envisaged tasks include data cleaning and
format conversion, as well as data contextualization, fusion,
and partition, These tasks are performed at the edge nodes
that are deployed at the remote sites.

The analytical phase combines different machine learning
models that collaborate for an automated self-diagnostics of
LMR systems. The edge analytics is performed using accu-
mulated IIoT data streams. The machine learning models such
as the SARIMA [20] and Prophet [21] models are selected to
diagnose a problem taking place at a remote site. At the edge,
a Python script containing a forever loop is also used to detect
the incoming IIoT data streams which are visualized to support
the monitoring of the health conditions of a remote site.

Cloud analytics is performed by applying the machine
learning model using the accumulated data streams from all
remote sites. The aim is to diagnose a problem at the network
level of the LMR infrastructure using the Random Forest
model [22]. The multi-correlation approach is also proposed to
detect partial and semi-partial correlation between the sensor
observations and improve the user’s understanding about their
relationships. Finally, based on the edge and cloud intelligence,
notifications and actions can be delivered during the activation
phase.
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Fig. 2. Overview of the automated data workflow

IV. EXPERIMENT

A. Architecture Implementation

The sensors component was built based on general-purpose
sensors (motion, temperature, humidity, wind) and commercial
sensors (MOTOTRBO, RF Sensor). The edge nodes were
implemented using the Cisco IR829 Industrial Integrated
Services Routers (IR829) that have a compact form factor,
multimode 4G LTE and 3G wireless WAN (dual-active LTE
and single LTE models), IEEE 802.11a/b/g/n WLAN, Ethernet
(RJ45 and SFP), serial connections, integrated storage and
compute capability for edge application hosting, and integrated



9-32 VDC power input. The cloud environment was developed
using AWS services.

B. IIoT Data Streams

The IIoT data streams were collected from different sensors
located at seven remote sites. At each remote site, the incoming
data was continuously pushed to the outposts (edge nodes)
before sending it to the cloud. For this study, the IIoT data
for nearly 3 months (from April 29th to July 24th 2019) was
used and can be described as follows1:

• IIoT data from site related sensors: These sensors in-
clude environmental sensors such as motion, temperature,
humidity, and wind at the remote site. Furthermore,
they also include sensors that continuously read and
monitor the cellular network signal strength data, detect
asynchronous events, and monitor non-contact alternate
current at the remote site. This IIoT data was collected
every 2.5 minutes.

• IIoT data from RF sensors: These sensors collect impor-
tant information related to VSWR in order to see how
efficiently radio-frequency power is transmitted from a
power source into a load, through a transmission line.
Forward power and reflected power values are also col-
lected to measure the power delivered to the load. They
can also detect if an RF sensor is active or not. This IIoT
data was pushed to the edge nodes every 15 minutes.

Both types of IIoT data were pre-processed at the edge
nodes for data cleaning and data format conversion from JSON
to CSV. However, as the VSWR data streams were being
processed at the edge nodes, they were being sent to the cloud.
In contrast, the site sensor data streams were accumulated for
further performing edge analytics tasks.

V. DISCUSSION OF RESULTS

Two scenarios have been selected to illustrate the results of
the self-diagnostic process based on the proposed automated
data workflow. They are described in detail in the next
sections.

A. Scenario 1: Self-diagnostics at the remote site

We have selected two remote sites to illustrate the self-
diagnostic process at the edge using the outcomes from our
automated data workflow. In this scenario, sensors such as
humidity, temperature, motion, signal status, and AC Power
are used to support intelligent maintenance. The goal is to
achieve a self-diagnostic outcome that can reduce outages by
50% and provide pro-active services. Figure 3 illustrates two
samples of the IIoT data streams being generated at two remote
sites. In this case, the data streams show a higher disturbance
occurrence at the site A in comparison to the site B.

For the site A, the Prophet model was applied to the time-
series data generated by the temperature sensor, where linear
trends were fit with daily and weekly seasonality as shown in
Figure 4.

1See the link https://github.com/hung-cao/LMR paper for further details of
these data streams

(a) Site A

(b) Site B

Fig. 3. Real-time incoming data streams

Fig. 4. Observed trends at Site A

The forecast results are shown in Figure 5, where the black
line represents the observed temperature values, meanwhile
the blue line represents the forecast values from the Prophet
model. During the training using only 80% of the historical
data, it was clear that the Prophet model had a robust fitting
to high and medium observed temperature values rather than
lower values. The uncertainty for the forecast trend was based
on the assumption that the future will see the same average
frequency and magnitude of rate changes that were seen in the
historical temperature data.

In contrast, the SARIMA model was selected for the site B
due to the seasonal patterns exhibited by temperature trends



Fig. 5. Predicted temperature at the site A for a 3-day horizon forecast

observed at this site. This model is based on the assumption
that a future value of a variable is assumed to be a linear
function of several past observations and random error. Figure
6 shows how this linear regression model has used its own
lags as predictors when the predictors were not correlated and
were independent of each other.

Fig. 6. Plot diagnostics results of the SARIMA model at Site B

The top left plot shows the residuals found over time
were random, assuring that the model has found the trend
and seasonality in the data by removing the noise during
the training. In the top-right plot, the red KDE line follows
closely with the N(0,1) line, indicating that the residuals were
normally distributed. This line is the standard notation for a
normal distribution with a mean of 0 and a standard deviation
of 1. In the bottom left qq-plot, the ordered distribution of
residuals (blue dots) followed the linear trend (red line) of the
samples taken from a standard normal distribution with N(0,
1). Finally, the correlogram on the bottom right shows that
the time series residuals had a low correlation with the lagged
versions of itself.

Figure 7 shows the predicted results for the remote site B.
The blue line represents the historical data used for the training
of the model, the orange line represents the predicted values,

and finally, the grey line represents the residuals. This machine
learning model has shown flexibility to describe the behavior
of actual non-stationary and seasonal time series, which makes
it ideal for forecasting temperature at the site B.

Fig. 7. Future forecast results at Site B

B. Scenario 2: Self-diagnostics of the LMR network level

In this scenario, the aim is to integrate the continuous
VSWR monitoring at the LMR network level. First, the multi-
correlation matrices were computed to help users to identify
the main relationships between observations over time. Figure
8 shows an example of the coefficients of a multiple correlation
matrix, showing a high correlation between the VSWR and
FwdPwr signals. In contrast, the RefPwr signal shows a low
correlation with the other signals.

Fig. 8. Multiple correlation matrix results.

The accumulated IIoT data from all remote sites were
also used as the input to the Random Forest model. The
labels FwdPwr (critical event) and No Event were used in the
prediction. The aim is to alert technicians of critical events
to help mitigate future damage and maintain the performance
of the system as a whole. The accuracy of the prediction is
shown in Table I.

It was also interesting from the self-diagnostic perspective
to identify the sensor observations that were significant in
predicting the occurrence of critical events happening at the
network level. Figure 9 shows the importance feature scores
obtained from the RF sensor data from all remote sites that



TABLE I
ACCURACY OF PREDICTED RESULTS

Precision Recall F1 Score

FwdPwr 0.72 0.93 0.81
No event 0.94 0.77 0.85

Accuracy 0.83
Macro Average 0.83 0.85 0.83
Weighted Average 0.86 0.83 0.84

had an effect on the diagnostics process. The Reflected Power,
Forward Power, and and the location of a site were the most
important observations to diagnose critical events at the remote
sites.

Fig. 9. Feature Importance Scores found in the RF sensor data

VI. CONCLUSIONS AND FUTURE RESEARCH WORK

We have described the preliminary results obtained from
exploring the integration of IIoT sensors with edge and cloud
resources, having as the main goal to develop self-diagnostics
of Land Mobile Sytems. The platform was implemented to
generate an intelligent management based solution for moni-
toring RF sites.

The implemented automated data workflow was capable
of harmonizing three machine learning models that collabo-
rate for an automated self-diagnostics of LMR systems. The
SARIMA, Prohet and Random Forest models have produced
accurate predictions using real-world IIoT data streams gen-
erated from seven remote sites.

The results are promising, paving the way for further inves-
tigating other machine learning models to diagnose problems
that can lead to failures in critical communication and oper-
ation, indicating that a component is damaged or a weather-
related incident has occurred. We will also work towards a
centralized scheduler which will dynamically manage the load
balance during the entire IIoT stream data lifecycle of the
automated data workflow in order to avoid running out of
storage and processing capacity at the edge nodes.

ACKNOWLEDGMENTS

This project was funded by the MITACS Accelerate Funding
Program under the Investigations and Analysis of Industrial
Internet of Things Ecosystems Project. We would like to
thank Rimot.io for providing the real-world data used in our
research.

REFERENCES

[1] T. Qiu, J. Chi, X. Zhou, Z. Ning, M. Atiquzzaman, and D. O. Wu, “Edge
Computing in Industrial Internet of Things: Architecture, Advances and
Challenges,” IEEE Communications Surveys & Tutorials, vol. 22, no. 4,
pp. 2462–2488, 2020.

[2] P. Bellavista, R. D. Penna, L. Foschini, and D. Scotece, “Machine
Learning for Predictive Diagnostics at the Edge: an IIoT Practical
Example,” in ICC 2020 - 2020 IEEE International Conference on
Communications (ICC), pp. 1–7, IEEE, jun 2020.

[3] H. Cao, Developing an analytics everywhere framework for the Internet
of Things in smart city applications. PhD thesis, University of New
Brunswick., 2019.

[4] R. Bianchini, M. Fontoura, E. Cortez, A. Bonde, A. Muzio, A.-M.
Constantin, T. Moscibroda, G. Magalhaes, G. Bablani, and M. Russi-
novich, “Toward ml-centric cloud platforms,” Communications of the
ACM, vol. 63, no. 2, pp. 50–59, 2020.

[5] Y. Wu, “Cloud-Edge Orchestration for the Internet-of-Things: Architec-
ture and AI-Powered Data Processing,” IEEE Internet of Things Journal,
vol. 4662, no. c, pp. 1–1, 2021.

[6] F. Foukalas and A. Tziouvaras, “Edge AI for Industrial IoT Applica-
tions,” IEEE Industrial Electronics Magazine, pp. 0–0, 2021.

[7] Q. Liang, P. Shenoy, and D. Irwin, “AI on the Edge: Characterizing AI-
based IoT Applications Using Specialized Edge Architectures,” in 2020
IEEE International Symposium on Workload Characterization (IISWC),
pp. 145–156, IEEE, oct 2020.

[8] H. Zheng, A. R. Paiva, and C. S. Gurciullo, “Advancing from predictive
maintenance to intelligent maintenance with ai and iiot,” arXiv preprint
arXiv:2009.00351, 2020.

[9] J.-R. Ruiz-Sarmiento, J. Monroy, F.-A. Moreno, C. Galindo, J.-M.
Bonelo, and J. Gonzalez-Jimenez, “A predictive model for the main-
tenance of industrial machinery in the context of industry 4.0,” Engi-
neering Applications of Artificial Intelligence, vol. 87, p. 103289, 2020.

[10] O. G. Manzanilla-Salazar, F. Malandra, H. Mellah, C. Wetté, and
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