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Abstract

Despite many efforts on developing protocols, architectures, and physical infrastruc-

tures for the Internet of Things (IoT), previous research has failed to fully provide

automated analytical capabilities for exploring IoT data streams in a timely way.

Mobility and co-location, coupled with unprecedented volumes of data streams gen-

erated by geo-distributed IoT devices, create many data challenges for extracting

meaningful insights. This research work aims at exploring an edge-fog-cloud contin-

uum to develop automated analytical tasks for not only providing higher-level intel-

ligence from continuous IoT data streams but also generating long-term predictions

from accumulated IoT data streams. Towards this end, a conceptual framework,

called “Analytics Everywhere”, is proposed to integrate analytical capabilities ac-

cording to their data life-cycles using different computational resources. Three main

pillars of this framework are introduced: resource capability, analytical capability,

and data life-cycle. First, resource capability consists of a network of distributed

compute nodes that can handle automated analytical tasks either independently or

in parallel, concurrently or in a distributed manner. Second, analytical capability

orchestrates the execution of algorithms to perform streaming descriptive, diagnos-

tic, and predictive analytics. Finally, data life-cycles are designed to manage both

continuous and accumulated IoT data streams. The research outcomes from a smart

parking and a smart transit scenario have confirmed that a single computational re-
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source is not sufficient to support all analytical capabilities that are needed for IoT

applications. Moreover, the implemented architecture relied on an edge-fog-cloud

continuum and offered some empirical advantages: (1) on-demand and scalable stor-

age; (2) seamlessly coordination of automated analytical tasks; (3) awareness of the

geo-distribution and mobility of IoT devices; (4) latency-sensitive data life-cycles;

and (5) resource contention mitigation.
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Chapter 1

Introduction

The main technological drives for carrying on this research can be described as

being the Internet of Things (IoT), Geographic Information Systems (GIS), and the

synergy of edge, fog, and cloud computing. They play an important role in the

conceptualization and implementation of streaming analytical capabilities and in

the data life-cycle of automated analytical workflows for IoT applications. They are

further discussed in the next sections.

1.1 Background

1.1.1 Internet of Things

The fast growth of IoT sensors, physical infrastructures, protocols, and IoT appli-

cations is currently considered to be the first phase of a technological revolution in

smart cities (Al-Fuqaha et al., 2015). The “Things” are usually “physical devices”

which can sense their surroundings and interact among themselves without human in-
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tervention (López et al., 2012). The IoT enables traditional things to be transformed

into embedded sensors within an environment or into wearable things carried by us

(Mukhopadhyay, 2014; Phillips et al., 2017). These items rely on sensor networks

that are supported by communication technologies such as Bluetooth, WiFi, ZigBee,

RFID, and LTE (Lee et al., 2007; Crosby and Vafa, 2013; Yang et al., 2014), Inter-

net protocols such as REST, HTTP, MQTT, AMQP (Naik, 2017; Thangavel et al.,

2014), identification technologies such as IPv4, IPv6, uCode (Deering and Hinden,

2017; Koshizuka and Sakamura, 2010), and pervasive computing and applications

(Kiljander et al., 2014).

The IoT data streams generated by IoT devices have fast-incoming data

rates that are usually described as unbounded sequences of time-varying data tuples

(Cao et al., 2017; Bonte et al., 2018; Almuammar and Fasli, 2018). Extracting useful

insights from these data streams is a non-trivial task, especially when it comes to the

IoT applications with continuous data streams (high velocity) and accumulated data

streams (high volume). Some examples of IoT applications include fleet management

(Xu et al., 2019), traffic monitoring (Barthélemy et al., 2019), healthcare (Abdellatif

et al., 2018), manufacturing (Chen et al., 2018), agriculture (Elijah et al., 2018),

and smart grids (Ozger et al., 2018). For these IoT applications, the efficient re-

trieval and processing of IoT data streams are important requirements that demand

(i) consideration of computing power, storage capability, communication capability,

analytical capability, and energy for analyzing IoT data streams; and (ii) generating

useful and higher-level information in a timely way before it becomes outdated for

supporting IoT applications.

Two phases can be distinguished in the evolution of IoT. The first phase has

focused on the proliferation of sensors, protocols, and architectures, where the main

research challenges were related to network connectivity, IoT platforms, and sensor
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configurations. A second phase is gradually taking place where the core research

challenges are shifting from physical infrastructures to analytical capabilities that are

being developed according to the requirements of IoT applications (Marjani et al.,

2017). This research is focused on addressing the challenges of developing analytical

capabilities for IoT applications.

1.1.2 IoT and Geographic Information Systems

The stream data collected by IoT devices might contain spatial information (e.g. po-

sition, altitude, distance), temporal information (e.g. event time, processing time),

or thematic information (e.g. temperature, humidity, speed, concentration, pres-

sure) about their surrounding environments. Contextualizing the huge volume of

IoT data streams with automated tagging that contains geographical information

(e.g. proximity, topology, connectivity) and other contextual information about an

environment, event or a phenomena, can significantly improve the results of ana-

lytical workflows, especially when the analytical tasks are automated. Additional

correlations, patterns, and trends can be revealed using the spatial functionalities of

GIS.

However, IoT-GIS platforms are being newly developed, and developers

usually struggle with integrating the data acquired from multiple sources such as

Things, Models, Virtual Objects, and Real Objects (Isikdag, 2015). Current GIS

platforms do not allow efficient processing and storage of IoT data streams. There-

fore, the research challenge is to develop IoT-GIS platforms that can handle process-

ing of a variety of IoT data streams, which will be generated by smart cities in the

near future (Pavĺık et al., 2018). Specifically, an IoT-GIS platform is required (i)

to consume and process massive volumes of stream data; and (ii) to have the abil-

ity to interoperate with other platforms and IoT devices through open interfaces and
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standards. There is an increasing trend to shift from the traditional desktop-based

GIS platform to cloud-based solutions in order to handle the volume of IoT data

received. However, the newly developed cloud-GIS models will face many challenges

in terms of performing analytical tasks without human intervention.

Miller and Goodchild (2015) emphasize that it is paramount to transform

geospatial research to explore new forms of data and their respective new represen-

tations of real-world phenomena. Some of the challenges will be new, whilst others

are longstanding in geospatial research and will be intensified by the large volume

of IoT data. This research takes a step in this direction by exploring the challenges

of building IoT-GIS platforms that must be developed for analyzing the exponential

number of new forms of IoT data. These new forms of IoT data will be generated

continuously and offer far greater spatial granularity.

1.1.3 Cloud Computing

According to the NIST definition (Mell et al., 2011), cloud computing is a paradigm

that can provide pervasive, on-demand network access to a shared pool of config-

urable computing resources (e.g. networks, servers, storage, memory, applications,

and services) which are maintained and controlled by service provider with minimal

direct active management effort from the user. In the current literature, the cloud

computing environment is the most preferred choice for processing and analyzing IoT

data streams since it can provide virtually unlimited and on-demand resources, and

scalability for storing IoT data streams. The cloud computing environment also sup-

ports complex operations. Due to its flexibility and efficient resource provisioning,

previous research has been focused on finding a solution to support IoT virtualiza-

tion features, alongside straightforward IaaS (computing and storage) virtualization

in the cloud (Yu et al., 2018; Bruneo et al., 2018; Paulraj et al., 2018; Mekala and
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Viswanathan, 2019; Alhussein et al., 2018).

Stream processing in the cloud is not new. Literature shows that most of the

existing stream processing platforms follow one of the two typical cloud architectures:

Lambda or Kappa Architecture (Wingerath et al., 2016). Lambda Architecture was

first introduced by Marz and Warren (2015). Its core principle when handling the

data streams is to combine both batch and stream processing systems to execute

different paths of computation. These computation paths are always running in par-

allel in order to guarantee that we have a streaming fast path for timely approximate

results, and a batch offline path for late accurate results. The advantage of this ar-

chitecture is to manage the historical data to assure a low possibility of errors even

if the system crashes. However, this approach introduces high latency imposed by

every batch processing cycle. It also suffers from high complexity and is difficult to

migrate or reorganize due to the involvement of comprehensive processing. For ex-

ample, it is difficult for Lambda Architecture to successfully interact within several

systems, and there is a high coding overhead.

In contrast, Kappa Architecture dispenses with the batch processing sys-

tems in favor of simplicity (Kreps, 2014). In this case, all computations are per-

formed in a stream processing system alone and batch programs are treated as a

special case of streaming programs. They only perform re-computation when the

stream is bounded (fixed) by replaying historical data. This architecture finds its

application in the processing of distinct events where the order and the event time

does not matter since all data tuples implicitly belong to one all-encompassing time

window. However, the absence of a batch processing system might result in errors

during data processing. Also, the attempt to replay the entire historical data might

create huge pressure on the storage requirements of a streaming system rather than

periodically processing the new data and updating the existing data storage.
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1.1.4 Edge Computing

It is important to point out that the mobility of IoT devices poses many challenges in

pulling and pushing the data streams from these devices to remote clouds, indepen-

dently of using a Lambda or a Kappa architecture. In fact, Lu et al. (2014) points

out that one critical challenge in building the next generation of intelligent trans-

portation systems is related to the harsh communication environments inside and/or

outside of a moving vehicle. Solutions for vehicle-to-sensor, vehicle-to-vehicle, and

vehicle-to-road infrastructure connectivity are stringently dependent on latency and

reliability for controlling and monitoring purposes.

Moreover, moving IoT devices usually require seamless computation, stor-

age, and connection services over a vast geographical area (i.e. entire transit system),

which create challenges in the communication network used to transport IoT data

streams between sensors in a vehicle and the core network. The main issues are re-

lated to data becoming unreliable and error-prone as well as the requirement of an ex-

tensive amount of storage (Nahrstedt et al., 2016). Furthermore, cloud computing is

also facing increasing challenges in supporting the latency-sensitive, geo-distribution,

and situational-awareness of IoT devices. Transporting the data streams from remote

clouds to local applications becomes expensive because it requires a huge amount of

bandwidth, time, and energy.

Bearing in mind the mobility of IoT devices, another streaming architec-

ture has been proposed in the literature with the introduction of edge computing

for decreasing network congestion and latency (Cortés et al., 2015; Shi et al., 2016).

From the literature, the exact definitions of edge computing remain an ongoing dis-

cussion in academia (Shi et al., 2016; Varghese et al., 2016; Satyanarayanan, 2017b).

In the context of this study, edge computing refers to the enabling technologies al-
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lowing substantial computing and storage resources are located at the edge of the

network in close proximity to mobile IoT devices or sensors (i.e. gateways one-hop

away from an IoT device). Preliminary results are positive in alleviating the satu-

ration of network bandwidth, as well as accelerating automated analytical tasks, all

of which allows real-time decision making to become possible. More recently, edge

computing is receiving more attention, and more research efforts can be found in

the literature to exploit this computing paradigm for IoT applications (Nastic et al.,

2017; Patel et al., 2017; Satyanarayanan, 2017a,b). However, very few architectural

proposals can be found in the literature on edge computing. One example is IRESE

(Janjua et al., 2019) which is a model that relies on the edge device to perform

data stream analytics to detect various types of rare-events using two unsupervised

clustering algorithms. Another example is GeeLytics (Cheng et al., 2015), which

is a geo-distributed edge analytics platform that is still in the early design stage

to support dynamic processing topologies. A final example is StreamBox-TZ (Park

et al., 2019), a secure stream analytics engine used for isolating data streams and

their computations in a trusted execution environment at the edge.

1.1.5 Fog Computing

From an analytical perspective, the combination of edge and cloud computing still

has some limitations since edge nodes are lightweight with low processing and storage

capabilities, which results in resource contention and increase processing latency (Yu

et al., 2017). Dastjerdi and Buyya (2016) proposed fog computing as an intermediate

resource that can seamlessly integrate edge and cloud resources. Fog computing can

eliminate resource contention at the edge by supporting several analytical tasks at

the fog nodes and by coordinating the use of geographically distributed IoT devices

more efficiently than in the cloud.
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When fog computing was first being introduced by Cisco (Bonomi et al.,

2014), it was envisaged to apply in many applications, such as Smart Grids, Wind

Farm, Healthcare, Industrial Automation, Smart Traffic Lights, and Connected Ve-

hicles. It is originally defined as a highly virtualized resource to leverage untapped

processing power in network middleboxes (e.g. routers, rack servers) that provides

compute, storage, and networking services between the edge and cloud computing

environment when those middleboxes are either over-provisioned or not running at

full load. In the past few years, many applications have been realized in the fog

computing environment. For example, Santoro et al. (2017) developed a platform

based on open source technologies working in a fog computing environment called

Foggy, which allows infrastructure owners and tenants to offer the functionality of

negotiation, scheduling and workload orchestration, and diversified constraints on

location and access rights. Seitz et al. (2017) introduced FRODO, which is a fog

architecture created to establish a location-aware environment for conflict negotia-

tion, discussion, and decision support to satisfy the individual preferences in smart

buildings. Recently, Fog-IBDIS (Wang et al., 2019) was created, which is an indus-

trial platform that is capable of integrating and sharing large amounts of data across

all operations of manufacturing systems. This platform has been implemented by

integrating the generated data of a commercial aircraft-manufacturing process in the

fog clients within the manufacturing systems.

1.1.6 IoT Frameworks

Vast amounts of incoming IoT data streams generated by many geo-distributed de-

vices create a huge challenge for ingesting and analyzing them at a high data rate.

From the literature, there are over 400 architectures and frameworks that can be

found to handle the incoming IoT data streams using different strategies such as
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stream, micro-batch, and batch processing (Wingerath et al., 2016; Cao and Wa-

chowicz, 2017).

Batch-oriented processing frameworks have been efficiently used for process-

ing massive amounts of historical IoT data with high throughput but also with high

latency. Aiming to increase efficiency, micro-batch processing frameworks buffer and

process IoT data streams in many mini-batches. However, it will obviously increase

the time that the data streams spend in the data pipeline. In contrast, stream-

oriented processing frameworks typically provide short-time computations but have

relatively high data processing costs on a continuous stream of IoT data. Stream-

oriented processing architectures usually avoid putting data at rest. Instead, they

minimize the time a single data tuple should spend in a processing pipeline.

From an analytics perspective, a paradigm shift has emerged recently in the

evolution of IoT architectures aiming at software, analytics, and platform configura-

tion. Streaming analytics algorithms are being developed to extract knowledge and

insights from IoT data streams as soon as they arrive at a specific computational

resource. However, it is challenging to extract value online, since the nature (or dis-

tributions) of IoT data streams change over time due to the geographical location of

IoT devices (De Francisci Morales et al., 2016). In addition, streaming analytical al-

gorithms are normally required to work within limited resources (time and memory).

Some open-source frameworks for IoT data stream analytics are being developed in-

cluding MOA, SAMOA and skit-multiflow (Montiel et al., 2018; Morales and Bifet,

2015; Bifet et al., 2011) using only streaming processors. However, these frameworks

are still leveraging the cloud computing paradigm for handling the analytical tasks,

since IoT data streams are fetched to and accumulated in the cloud over a long

period of time and are later analyzed in batches using traditional machine learning

and data mining algorithms.
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The proposed architecture implemented in the next chapters is a step for-

ward in finding a unique solution that combines the advantages of different computa-

tional resources into an integrated edge-fog-cloud fabric that is capable of capturing,

managing, processing, analyzing and visualizing IoT data streams. This fabric of

computational resources is designed to work towards an asynchronous approach for

supporting an “Analytics Everywhere” framework making the development, deploy-

ment and maintenance more pragmatic and scalable. By breaking down the pro-

cessing and analytical capabilities into a network of streaming tasks and distributing

them into different compute nodes in an edge-fog-cloud continuum based on a pre-

defined data life-cycle, our proposed architecture can support streaming descriptive,

diagnostic and predictive analytics. For example, some predictive analytical tasks

can be executed in the cloud while diagnostic analytical tasks can be performed

online (on-the-fly) at an edge or fog node.

1.1.7 Summary

In this research, the edge-fog-cloud continuum is proposed based on the research

premise that a single computational resource, such as the cloud, will be not sufficient

to support all analytical tasks that are required to be automated for handling IoT

data streams in a timely way. These current technologies allow us to rethink new

approaches that can cope with the following challenges:

• Structured/Semi-structured/Unstructured IoT data streams will be constantly

generated by geo-distributed devices in smart cities, requiring many stream-

ing automated analytical tasks that can manage, process, and retrieve high

velocity, variety, and volumes of data.

• Mobility and co-location of IoT devices in smart cities will require short range
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communication networks as well as long range communication networks for

transporting IoT data streams, avoiding bottlenecks, and reducing data la-

tency.

All of these challenges are leading to the consideration of a new approach for

extracting knowledge and insights from IoT data streams. This is further discussed

in the next section.

1.2 Research Questions

The proposed“Analytics Everywhere” framework distributes analytical tasks as the

IoT data streams are being transported through an edge-fog-cloud continuum that

combines analytical tasks for supporting processing off the cloud, saving in data

transfer, and analyzing data streams closer to the IoT devices. This new approach

will directly require automated tasks and raise crucial research questions such as the

following:

Q1. How can automated analytical tasks be developed for supporting analyti-

cal capabilities such as streaming descriptive/diagnostics/predictive algorithm-

s/methods?

Q2. How can continuous and accumulated streams be combined while taking into

account different IoT data life-cycles?

Q3. How can IoT and GIS be integrated into the edge-fog-cloud continuum without

compromising resource capabilities?

Q4. What are the benefits and limitations of the proposed “Analytics Everywhere”

framework in smart cities?
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1.3 Research Objectives

The proposed “Analytics Everywhere” framework aims to achieve both low latency

and low complexity by orchestrating several resource capabilities into a unique and

seamless processing architecture. The main advantage is that users have the control

to define user-defined time windows and geographical areas of interest. Additionally,

arbitrary inaccuracy of the analytical results can be significantly alleviated because

the “Analytics Everywhere” framework explicitly monitors the data life-cycles. This

ensures that each automated analytical task has the right data at the right time. The

main limitation, however, is that there is no guarantee that data tuples belonging to

a stream are being handled, at most once, by a streaming task of an IoT application.

The measurable objectives of this research work can be described as follows:

(O1): Identify the algorithms/methods that can be used for supporting automated

streaming analytical tasks (analytical capability).

(O2): Identify the off-the-shelf tools that can be used to implement the proposed

framework (computational resources).

(O3): Identify the potential IoT applications in smart cities while taking into account

the availability of IoT data streams.

(O4): Develop data life-cycles for executing automated analytical tasks and coping

with continuous IoT data streams.

(O5): Develop data life-cycles for executing automated analytical tasks and coping

with accumulated IoT data streams.

(O6): Build the architecture for this new framework based on a continuum of edge-

fog-cloud nodes.
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(O7): Implement the “Analytics Everywhere” framework in real-world experiments

to evaluate the proposed approach. Two experiments were selected according

to data availability: smart transit and smart parking.

(O8): Implement the data life-cycles for the real-world experiments.

(O9): Validate the proposed “Analytics Everywhere” framework.

1.4 Scientific Contributions

This research work proposes a conceptual “Analytics Everywhere” framework based

on an edge-fog-cloud continuum to handle the volume, velocity, and variety of incom-

ing data streams from IoT devices. This proposed framework performs automated

analytical tasks using complementary data life-cycles and resource capabilities such

as edge, fog, and cloud computing. Three main components of this framework are

resource capability, analytical capability, and data life-cycle. Firstly, resource ca-

pability comprises a network of distributed compute nodes that provide different

computing resources (e.g. I/O, storage, computation, and processing power) for

every analytical task. The compute nodes are usually deployed covering a large geo-

graphical area, and they can be static (i.e. a fog node deployed inside a building) or

dynamic (i.e. an edge node deployed in a car). The core hardware of the compute

nodes could be one or a combination of several processing units such as Graphics

Processing Units (GPUs), Central Processing Units (CPUs), Accelerated Processing

Units (APUs), Application Specific Integrated Chips (ASICs), Field Programmable

Gate Arrays (FPGAs), or System-on-Chip (SoC) accelerators. These compute nodes

can handle analytical tasks either independently or in parallel and have either con-

current or distributed styles. A network of distributed compute nodes is a noticeable

contribution, since the past studies related to analyzing IoT data streams tend to
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stick to one type of computational resource (i.e. cloud) or a two-tier topology con-

sisting of edge and cloud nodes.

Secondly, analytical capability presents the best practice methods/algo-

rithms. These methods/algorithms need to be automated to execute analytical tasks

such as pre-processing, contextualization, and spatio-temporal analysis tasks, which

are needed for supporting descriptive, diagnostic, and predictive analytics. I have

classified IoT data streams into two types: accumulated IoT data streams and con-

tinuous IoT data streams. Accumulated IoT data streams are the IoT data streams

that are transmitted to a compute node and are accumulated there over a period of

time until an automated analytical task is triggered or finalized. For example, an

automated contextualization task will require the accumulation of IoT data streams

according to a time-window in order to provide a mobility context. This mobility

context helps to explain phenomena, to reinforce different perspectives, and to pro-

vide an accurate understanding of the background surrounding the problem in an

IoT application. In contrast, continuous IoT data streams are the IoT data streams

that have constantly incoming data tuples, which are bouncing from one compute

node to another. These data tuples are required to be processed or analyzed im-

mediately at each hop. This is particularly the case for automated pre-processing

tasks such as cleaning, filtering, and querying. To the best of my knowledge, my

proposed framework is the first attempt to integrate different analytical capabilities

using both accumulative and continuous IoT data streams, which can be transported

and analyzed via an edge-fog-cloud continuum using a variety of tools such as Cisco

Kinetic, GIS, Python libraries, geospatial databases (e.g. PostgreSQL, MongoDB,

RethinkDB), Hadoop MapReduce, and GTFS packages.

Lastly, a data life-cycle describes the process that both continuous and

accumulated IoT data streams go through during the automated execution of ana-
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lytical tasks. The actual data-life cycle process will depend on the sequence of the

analytical tasks designed to support an IoT application. We expect that different

IoT applications will require specific data life-cycle processes. However, determining

how to map different analytical capabilities with the most appropriate computational

resources based on a data life-cycle of an IoT application is far from being a trivial

endeavour, since several aspects must be taken into account. Not all analytical tasks

can run on all compute nodes due to the complexity of learning paradigms that cur-

rently exist such as deep learning, on-line learning, local learning, and anticipatory

learning, to mention a few. Moreover, it is important to point out that an “Analytics

Everywhere” framework will have limitations. Real-world IoT applications will play

an important role in providing empirical evidence to validate and improve such a

framework. Developing automated streaming analytics for IoT data streams is still

in its infancy, and applications usually require a diverse number of data life-cycles

having different temporal granularities. There has been very little research reported

on the impact of analytical tasks in the IoT architectures. The scientific contribution

of this research is therefore to ascertain this impact, using real-world scenarios such

as smart parking and smart transit.

On a final note, it is worth mentioning that the proposed conceptual frame-

work is not the one-size-fits-all approach. At this moment in the evolution of IoT,

it is not yet possible to envisage a framework that can fit all IoT applications. The

empirical advantage of the proposed conceptual framework is that it allows users

to develop, test, debug, operate, and manage their IoT applications on top of a

single analytical framework. I do not claim that the proposed architecture will cre-

ate more efficiency than other architectures. Instead, there is a set of trade-offs of

desideratum such as high availability, low latency, high throughput, low cost, data

distribution, data reliability, precise semantics, easy maintenance, processing flexi-

bility, and platform openness for the developers to choose, depending on a particular
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IoT application.

1.5 Structure of Dissertation

This article-based dissertation presents a collection of three scientific papers that

have been assessed via the peer review processes.

1. Cao, H., Wachowicz, M., Renso, C., & Carlini, E. (2019). Analytics Ev-

erywhere: generating insights from the Internet of Things. IEEE Access, 7,

71749-71769. (Peer Reviewed - Impact Factor: 4.098)

2. Cao, H., & Wachowicz, M. (2019). An Edge-Fog-Cloud Architecture of

Streaming Analytics for Internet of Things Applications. Special Issue Edge/-

Fog/Cloud Computing in the Internet of Things. Sensors, 19 (16), 3594. (Peer

Reviewed - Impact Factor: 3.031)

3. Cao, H., & Wachowicz, M. (2019). The design of an IoT-GIS platform for

performing automated analytical tasks. Computers, Environment and Urban

Systems, 74, 23-40. (Peer Reviewed - Impact Factor: 3.393)

Table 1.1 illustrates the main contents and objectives that have been achieved

in each article in this dissertation. The remainder of this dissertation is organized

and summarized as follows:

• Chapter 2 (Article 1) includes the answers for research questions Q1., Q2., and

Q4. by addressing objectives (O1), (O2), (O3), (O5), (O6), (O7), (O8),

and (O9). This chapter proposes an “Analytics Everywhere” framework that

can integrate a variety of computational resources including edge, fog, and
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Table 1.1: The summary of the structure of dissertation.

Short Description Article 1 Article 2 Article 3

O
b

je
ct

iv
e
s

(O1): Analytical Capability X X X

(O2): Computational Capability X X X

(O3): IoT Applications X X X

(O4): Data Life-cycles & coping with
continuous IoT data streams.

X

(O5): Data Life-cycles & coping with
accumulated IoT data streams.

X X X

(O6): Continuum of edge-fog-cloud X X

(O7): Real-world experiments: smart
transit & smart parking

X X X

(O8): Data life-cycles for the
real-world experiments

X X

(O9): Validate the proposed Analytics
Everywhere framework

X X X

cloud nodes (addressing objectives (O2) and (O6)) and analytical capabilities

such as descriptive, diagnostic, and predictive analytics (addressing objective

(O1)), according to a data life-cycle (addressing objectives (O5) and (O8)).

I demonstrate the effectiveness of my proposed framework using an application

in smart transit (addressing objectives (O3), (O7), and (O9)).

• Chapter 3 (Article 2), as an evolution of Chapter 2, is meant to answer the

same research questions (Q1., Q2., and Q4.) by tackling all research objec-

tives mentioned in Table 1.1. In this chapter, an architecture based on the

edge-fog-cloud continuum is proposed (addressing objectives (O2) and (O6))

to analyze IoT data streams for delivering data-driven insights (addressing

objective (O1)) in a smart parking scenario in the City of Saint John, NB,

Canada (addressing objectives (O3), (O7), and (O9)). Two data life-cycles

are developed and implemented to carry out the analytical tasks in the contin-
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uous data streams and accumulated data streams (addressing objectives (O4),

(O5), and (O8)) that are constantly generated by IoT devices.

• Chapter 4 (Article 3) mainly aims to resolve the research question Q3.. As

highlighted in Section 1.1.2, GIS plays an important role in the insights discov-

ery process from IoT data streams. However, integrating IoT and GIS into the

“Analytics Everywhere” framework is a non-trivial research work. Some ob-

jectives, including objectives (O1), (O2), (O3), (O5), (O7), and (O9), have

been achieved during the process of conducting this research work. This chap-

ter presents my design for an IoT-GIS platform (addressing objective (O2))

that performs automated analytical tasks (addressing objective (O5)). These

tasks are able to retrieve, integrate, and contextualize data streams from the

Internet of Moving Things without human intervention (addressing objective

(O1)). My proposed platform has been validated via the realtime data col-

lected from the transit service provided by the Codiac Transit System of the

Greater Moncton area, NB, Canada (addressing objectives (O3), (O7), and

(O9)).

• Finally, Chapter 5 concludes the dissertation by summarizing the key findings

in each chapter and by highlighting the main contributions of this research as

well as discussing some limitations and suggesting future work.
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Chapter 2

Analytics Everywhere: generating

insights from the Internet of

Things
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71749-71769.

Abstract

The Internet of Things is expected to generate an unprecedented number of un-

bounded data streams that will produce a paradigm shift when it comes to data

analytics. We are moving away from performing analytics in a public or private
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cloud to performing analytics locally at the fog and edge resources. In this paper, we

propose a network of tasks utilizing edge, fog and cloud computing that are designed

to support an “Analytics Everywhere” framework. The aim is to integrate a variety

of computational resources and analytical capabilities according to a data life-cycle.

We demonstrate the proposed framework using an application in smart transit.

2.1 Introduction

Across the Internet of Things (IoT), transferring data from IoT devices to remote

data centers is currently not efficient from a performance perspective due to the

limitation on bandwidth and the high latency. In fact, the technological gap between

the computational resources in the spectrum between an IoT device and the cloud is

closing rapidly, especially with the advent of edge and fog devices that can support

federated multi-tasking computation (Smith et al., 2017; Bonawitz et al., 2019) and

virtualization (Morabito et al., 2018). In addition, an important requirement of IoT

applications is related to privacy and confidentiality (Sicari et al., 2015). Keeping

sensitive data closer to their sources may potentially reduce the risk of infringing

privacy rights and breaking confidentiality.

Two phases can be distinguished in the evolution of IoT. The first phase has

focused on the proliferation of sensors, protocols, and architectures where the main

research challenges were related to network connectivity, IoT platforms, and sensor

configurations. A second phase is gradually taking place where the core research

challenges are shifting from physical infrastructures to analytical capabilities that are

being developed according to the requirements of IoT applications (Marjani et al.,

2017).

In this paper we introduce the concept of “Analytics Everywhere” as a con-
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ceptual framework that facilitates building computational resources that are needed

to support data analytics for IoT applications. We advocate that supporting the new

generation of IoT applications is more than just moving computation from the cloud

to the edge/fog nodes in a straightforward way. Instead, it requires an “Analytics

Everywhere” framework in which computational resources are designed and work

as a whole toward the completion of a network of analytical tasks. This embeds

the concept of data streams moving around distributed computational resources (i.e.

cloud, fog, and edge nodes) that provide storage and processing power for the execu-

tion of a network of tasks in such a way that a graph, sparse, and low-rank structure

between the tasks is known a priori.

The research challenge is three-fold. First, there is a need to rethink how

previous analytical algorithms have been independently developed. They must now

be integrated in a network structure, in a way that makes explicit the dependency

between the same tasks belonging to different algorithms as well as different tasks

belonging to the same algorithms. This network structure will require a mathemat-

ical formulation such as Directed Acyclic Graphs (DAG), Petri-Nets, and WF-nets.

Research work has been done in the past years on the mapping of DAG nodes onto

computational resources, as for example in (Kliazovich et al., 2016; Anastasi et al.,

2017). Second, a mapping between analytical capabilities and computational re-

sources for running the analytical tasks must be defined, taking into account the

variety of data life-cycles of IoT applications. In this case, analytical capabilities

can be described as being descriptive, diagnostic, and predictive. However, it is still

unknown what type of behaviour data streams exhibit during the data-life cycles of

IoT applications. Finally, an overall orchestration of the computational resources

(i.e. edge, fog, and cloud nodes) must be accomplished in order to guarantee a

smooth execution of a variety of analytical tasks.
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The contribution of this paper can be summarized as follows:

• We propose an “Analytics Everywhere” framework that integrates computa-

tional resources needed for a seamless execution of a network of analytical

tasks having automated analytical capabilities, generating useful and high level

information in a timely way.

• We demonstrate that a single computational resource (i.e. cloud) is not suffi-

cient to support all analytical capabilities that are needed for IoT applications,

considering computing power, data stream management, storage and network-

ing capabilities.

• We discuss the challenges and how an “Analytics Everywhere” framework can

be designed to perform descriptive, diagnostic, and predictive analytical tasks.

• We validate our “Analytics Everywhere” framework using a transit experiment

by highlighting the pitfalls and discussing our experience.

The remainder of this paper is organized as follows. In Section 2.2, we re-

viewed different IoT enabling technologies and the data analytics that have been pre-

viously implemented using cloud/fog/edge computing. In Section 2.3, the “Analytics

Everywhere” framework is presented, including the components of resource capabil-

ity, analytical capability, and data life-cycle. Section 2.4 is dedicated to building an

“Analytics Everywhere” architecture. Section 2.5 describes in detail the experiment

of implementing our framework for a smart transit scenario and discusses the results.

Section 2.6 concludes the paper and discusses further research.
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2.2 Related Work

It is indisputable that IoT devices will produce a large amount of high-speed streamed

and heterogeneous data that poses many challenges to performing management,

processing, and analytical tasks within an acceptable time (Chen et al., 2014).

2.2.1 IoT Enabling Technologies

Al-Fuqaha et al. (2015) provide an overview of IoT enabling technologies that can

offer automation, data aggregation, and protocol adaptation using different IoT de-

vices. Overall, four main technologies can be identified in IoT: cloud, fog, edge, and

communication technologies.

2.2.1.1 Cloud Computing

Cloud computing has dominated the infrastructure and processing architectures de-

veloped to support Software as a Service (SaaS), Platform as a Service (PaaS), and

Infrastructure as a Service (IaaS) models during the last decade, leading to a trend

of Everything as a Service (XaaS) (Banerjee et al., 2011). By providing on-demand

processing services with high availability and rapid elasticity through a selection of

cloud architectures (e.g. Private, Public, Community, and Hybrid Cloud), previous

research has pointed out that IoT devices can benefit from the virtually unlimited

resources of the cloud, which compensates for their limitations in storage and com-

puting capabilities (Botta et al., 2014; Dı́az et al., 2016; Rao et al., 2012). As a

result, most of the architectures used to monitor (Galache et al., 2014; Ren et al.,

2015), optimize (Zhang et al., 2017), and analyze (Mukherjee et al., 2014) IoT data

streams have been developed based on cloud computing.
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However, cloud computing has shown limitations in supporting the short re-

sponse time needed for processing the high data rates generated by IoT devices. Sev-

eral open sources for processing IoT data streams such as Apache Storm (Karunaratne

et al., 2017) or Apache Spark (Zaharia et al., 2016) have been proposed in the lit-

erature but they still present major drawbacks due to the geographic distribution,

large-scale, and latency-sensitive characteristics of IoT applications (Patel et al.,

2017; Sun and Ansari, 2016). It is worth noting that transporting the data streams

to the cloud can still generate bottlenecks. While data storage density and comput-

ing power have increased 1018 and 1015 times respectively, the broadband capability

has increased only 104 times over the last 20 years (Botta et al., 2014). Pushing the

processing closer to IoT devices has emerged as an alternative solution, and edge and

fog computing have been proposed as alternative IoT enabling technologies (Patel

et al., 2017; Sun and Ansari, 2016; Satyanarayanan, 2017; Bonomi et al., 2014).

2.2.1.2 Edge Computing

According to Shi et al. (2016), edge computing refers to “the enabling technologies

allowing computation to be performed at the edge of the network, on downstream data

on behalf of cloud services and upstream data on behalf of IoT services”. The ratio-

nale behind edge computing is that 45% of IoT data will be processed and analyzed

at the edge of the network in the future (Shi et al., 2016). Recently, Harth et al.

(2018) have attempted to alleviate the network burden of transporting IoT data to

the cloud by locally applying aggregation analytics at the edge, and sacrificing the

analytical capability power due to the constraints of edge resources. A sliding win-

dow was applied to execute a simple linear classification to infer the context vectors

(n-dimension row vector of contextual parameters such as temperature, sound, and

humidity) within a specific tolerance threshold. Then, an aggregation analytics task
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including distributive, algebraic, and holistic functions was triggered if the errors of

the inferred context vectors were lower than the threshold. Otherwise, the smooth-

ing algorithm reconstructed the context vectors before executing the aggregation

analytics task.

2.2.1.3 Fog Computing

Fog computing was first introduced by Cisco as a bridge between the edge and cloud

resources (Bonomi et al., 2012). Other technologies having a similar concept were also

proposed in the literature such as cloudlet (Satyanarayanan et al., 2009) and mobile

cloud computing (Khan et al., 2013) as well as mobile edge computing (Nokia and

Intel, 2014). Lee et al. (2017) proposed an online computational caching framework

to minimize the latency by storing and reusing intermediate computation results

using fog nodes. Moreover, near realtime analytics was demonstrated in a seismic

case study and realtime analytics was also achieved in an ambient noise imaging case

study where a fog computing middle-ware architecture was developed for distributed

cooperative analytics (Clemente et al., 2017). Other scenarios have been envisaged

to apply fog computing, including Augmented Reality, Realtime Video Analytics,

Mobile Big Data Analytics (Stojmenovic and Wen, 2014), Smart Grid, Smart Traffic

Lights and Connected Vehicles (Bonomi et al., 2014), Decentralized Smart Building

Control, Wireless Sensors and Actuators Networks (Yi et al., 2015). Unfortunately,

none of these scenarios have been implemented so far.

2.2.1.4 Communication Technologies

Advances in communication technology play a vital role in bolstering the current

growth of IoT. The proliferation of IoT devices is partially thanks to the advance-
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ments in wireless communication technologies including Wireless Local Area Net-

work (WLAN), Wireless Personal Area Network (WPAN), and Low-Power Wide

Area Network (LPWAN) (Liao et al., 2018). While WLAN/WPAN provide a short

range connectivity (about 1-100 metres) to support device-to-device (D2D) commu-

nication with a high data rate, LPWAN does not require much power, nor bandwidth

to operate and provides long range connectivity (up to 50 kilometres) (Raza et al.,

2017). Some typical communication technologies of WLAN/WPAN including Radio-

frequency Identification (RFID) (Rose et al., 2015), Bluetooth Low Energy 4.0 (Huh

and Seo, 2017), Zigbee (Wang et al., 2016), and Wi-Fi (IEEE 802.11) are applied in

different IoT applications such as Smart Tourism (Cha et al., 2016), Smart Home

(Aburukba et al., 2016), Connected Health (Rahmani et al., 2018). LPWAN tech-

nologies including unlicensed (e.g. SigFox, LoRa (Mekki et al., 2019)) and licensed

(i.e. NB-IoT (Yang et al., 2017)) spectrum band are promising in terms of lower-

ing power consumption, and cost, and increasing reliability and range (Sinha et al.,

2017).

Cellular technologies that offer reliable broadband communication have had

a certain role in shaping the IoT applications in the past, and they are expected to

play an important role in the future. We have witnessed the growth of several

generations of cellular networks from 2G and 2.5G which were designed to support

voice services with an extension of small amount of data transmission, to 3G and 4G

LTE that were capable of offering a wide coverage area, high security, and a dedicated

spectrum allocation (Akpakwu et al., 2018). Although cellular technologies are not

fit for all IoT applications, since they require very high operational cost and power

consumption, they have shown to be suitable for specific scenarios such as connected

cars or fleet management (van Dam et al., 2019). In particular, the next-generation,

5G, is expected to provide extreme mobile broadband (xMBB), massive machine-type

communications (mMTC), and ultra-reliable machine-type communications (uMTC)
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and is positioned to be the future communication technology for IoT applications

that require ultra-low latency (Molina-Masegosa and Gozalvez, 2017; Li et al., 2018).

2.2.2 Data Analytics for IoT

Table 2.1 provides an overview of the type of analytical capability that has been im-

plemented using cloud/fog/edge resources for different IoT applications. Most of the

research efforts have been focused on descriptive analytics, and in particular, using

edge computing resources to support near realtime/realtime analytics. The variety

of IoT devices requires analyzing heterogeneous data “on the fly” and storing these

data using various storage technologies. Very few studies found in the literature pro-

pose diagnostics and predictive analytics and were usually implemented in the cloud.

To the best of our knowledge, our proposed “Analytics Everywhere” framework is

the first research effort to combine different analytical capabilities in such a way

that data streams can be transported and analyzed using the edge, fog, and cloud

resources. These resources are inter-dependent and should be jointly developed to

support IoT applications.

2.3 Analytics Everywhere Framework

This section describes our “Analytics Everywhere” framework to support the devel-

opment of new data life-cycles and facilitate the building of effective resource and

analytics capabilities for IoT applications. The three main components are as follows:

• Resource capability: This component consists of distributed compute nodes

(i.e. cloud, fog, and edge nodes) that provide I/O, storage, computation and

processing power for the execution of a network of analytical tasks;
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Table 2.1: Overview of the analytical capabilities and their cloud/fog/edge resources
for IoT applications.

Resource
Capability

IoT devices Analytical Capability Applications Ref.

Cloud RFID Tags, BLE
Class Association Rule
Mining using Sub-group
Discovery

Anticipatory Ubiquitous Computing
(Atzmueller
et al., 2016)

Cloud WiFi, BLE
Clustering and Aggregat-
ing, Näıve Bayes

Location/Future Movement Predic-
tion

(Nahrstedt
et al.,
2016)

Cloud
Spatial-Temporal Data,
GPS, Camera, Environ-
mental Sensors

Clustering (DBSCAN),
Querying

Moving Object Map Analytics
(MOMA), Contextual Spatial-
Temporal Analytics

(Sun et al.,
2016)

Cloud
GPS, Rain Gauge Data,
Road Incident Report, So-
cial Media

Descriptive (Statistical)
and Predictive (Addictive
Model, Kernel, SVM)

Urban Trajectory Data Analytics
System

(Vieira
et al.,
2015)

Edge +
Cloud

BLE Descriptive (Statistical) O/D Transportation Planning

(Herrera-
Quintero
et al.,
2016)

Edge +
Cloud

RFID Tags Descriptive (Statistical)
RFID Ecosystem for management,
IoT applications

(Welbourne
et al., 2009)

Edge +
Cloud

Sensors, Traffic Lights
Diagnostic (Virtual Repre-
sentation and Data enrich-
ment)

Virtual Object (VO) model to enrich
context information with Cognitive
Internet of Things

(Somov
et al.,
2013)

Edge Phone Camera Event Detection
Pedestrian Safety Detection (Offline
Training/Online Detection)

(Wang
et al.,
2012)

Edge Sensors, RFID Descriptive (Statistical)
Proposed the Smart Object frame-
work to encapsulate RFID, sensor,
Internet-based data

(López
et al.,
2012)

Edge
Wearable Sensors, GPS Re-
ceivers, Laptop, Smart-
phone

Descriptive (survey, thresh-
old analysis, self-report)

wearable system which can learn
context-dependent personal prefer-
ences

(Krause
et al.,
2006)

Edge Wifi Signal, GPS
Descriptive (Quantitative
Analysis, Statistics)

Wireless monitoring system that can
track pedestrian and passenger be-
haviors

(Qi et al.,
2017)

Fog R1+ Seismograph Nodes
Descriptive (Onboard co-
operative processing)

A fog computing middleware for dis-
tributed cooperative data analytics
for the seismic and ambient noise
imaging case studies

(Clemente
et al.,
2017)

Fog
Augmented Reality, Virtual
Reality data

Descriptive (online compu-
tational caching algorithm)

A computational caching frame-work
in a fog network to minimize the
transmission latency and computa-
tional latency by storing and reusing
intermediate computation results

(Lee et al.,
2017)

Fog Sensors tagged on animals Descriptive (Statistical)
Analyzing animal behaviors and
monitoring animal’s health

(Taneja
et al.,
2018)

Fog Wearable Sensors
Diagnostics (K-mean Clus-
tering)

Clustering on clinical speech data ob-
tained from patients with Parkin-
son’s disease

(Borthakur
et al.,
2017)

• Analytical capability: This component describes the best practice methods/al-

gorithms for the execution of a network of analytical tasks that can meet the

requirements of IoT applications;

• Data life-cycle: This component describes the changes that data streams go
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through during the automated execution of a network of analytical tasks.

2.3.1 Resource Capability

An “Analytics Everywhere” framework is required to integrate resource capabilities

taking into account one of the following aspects:

• Vicinity: This dimension describes how geographically close a compute node is

to the source of data in order to execute a network of analytical tasks in that

particular node. This dimension plays an important role in supporting IoT

applications since compute nodes can be static (i.e. deployed inside a building)

or mobile (e.g. deployed in a car), and their proximity to IoT devices, which are

usually widespread geographically and mobile, will require integrated resource

capabilities.

• Reachability: This dimension represents how easy it is to reach a compute

node via a network. Typically, if a compute node is connected to the Internet

with a fixed IP address, this can be considered a highly reachable resource, as

opposed to a node connected using a private network and behind a Network

Address Translation (NAT). In the case of IoT applications, the heterogeneity

of IoT devices combined with the predominance of wireless access and short

range networks will require an always-on reachability.

• In-memory and storage: This aspect describes how much data in a compute

node should be kept in memory or be stored as a single ordinary disk file or

in a database. The IoT data streams are expected to stay in-memory for a

limited period of time as needed by an analytical task, and this decision will

also depend on the data rate and data latency of the compute nodes. The
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data rate varies from high rates of data collected at the edge to a low rate of

aggregated and cleaned data arriving at the cloud. The latency is clearly very

low at the edge due to the proximity to the IoT devices and increases as we

move to the cloud.

• Computation: This dimension describes how much processing power is avail-

able at a compute node for performing a network of analytical tasks. A proper

modeling taking into account the IoT application requirements can help in

driving the decision about which computational resource to use in executing

the analytical tasks.

• Standardization: This dimension represents the strongest challenge yet to be

met in the implementation of “Analytics Everywhere” frameworks. The IoT

standards range from network protocols and data-aggregation standards to

security and privacy.

These dimensions play an important role in designing an “Analytics Ev-

erywhere” framework as shown in Figure 2.1. While computation and memory ca-

pabilities can increase as the analytical tasks are run from the edge to the cloud,

reachability must be always available to an analytical task. Reachability is a criti-

cal dimension that requires analytical tasks to return well-timed and synchronized

results, which demand a rapid increase in computational resources. Because fog

nodes are intermediary gateways that seamlessly integrate edge and cloud resources,

they can eliminate resource contention in the compute nodes and the communication

links. In contrast, edge nodes can facilitate the necessary scaling of IoT applications

because of their proximity to the IoT devices, making them an important computa-

tional resource for supporting near or realtime data analytics. However, the lack of

adoption of standards in edge resources and IoT devices is currently hampering the

implementation of “Analytics Everywhere” frameworks for IoT applications.
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Figure 2.1: The main dimensions of resource capabilities.

2.3.2 Analytical Capability

In “Analytics Everywhere” frameworks, analytical capabilities can be described as

being descriptive, diagnostic, and predictive. In general, descriptive analytics aims

to summarize a given dataset, which can be either a representation of the entire

population or a sample of it. While descriptive analytics can provide some key

metrics and measures that might reveal “What is happening in the real-world?”, the

diagnostic analytics aims to provide some insight to answer the question “Why is

it happening?”. The findings of descriptive and diagnostic analytics can be utilized

in predictive analytics to build prediction models for predicting tendencies, clusters

and exceptions, and future trends. Based on the insights obtained from predictive

analytics we can answer “What will happen?”.

Four major types of methods can be used to support descriptive analyt-

ics: frequency measurement, central tendency measurement, dispersion or variation

measurement, and position measurement. Although descriptive analytics can be per-

formed at the edge, fog, and cloud, we anticipate that it will be more often executed

at the edge. This is due to its proximity to IoT devices, and also because (i) raw

data are usually small in volume at the edge, and (ii) raw data can be subject to

IoT application requirements that prevent data from being moved to a cloud due to

privacy concerns.

38



Diagnostic analytics can be executed close to or far from an IoT device,

depending on where it is more feasible to install relatively powerful computational

resources. Diagnostic analytical tasks are usually supported by several algorithms

such as DBSCAN (Ester et al., 1996) and Affinity Propagation Clustering (Frey and

Dueck, 2007), which are executed to uncover hidden insights, patterns from contex-

tualized data. Fog and cloud resources can be used to perform diagnostic analytics

since they provide more powerful computation, storage, and accelerator resources

than edge nodes. They can improve the accuracy and reduce the computational

complexity of the diagnostic process by performing automated tasks in near realtime

or periodically.

Predictive analytics requires on-demand processing services with high avail-

ability and rapid elasticity through the virtually unlimited resources of the cloud.

New insights can be achieved by applying prediction algorithms such as Random For-

est, Hidden Markov Model (HMM), and Neural Networks. Auto-scaling, scheduling,

and monitoring services can also be used to handle the data streams received from

the edge and fog nodes. The analytical tasks use a massive amount of historical IoT

data that need to be processed according to the nature of IoT applications.

The overall network of tasks of our “Analytics Everywhere” framework is

represented as a Petri-Net model in order to ensure the optimal conceptualization

and execution of analytical tasks by avoiding path deviations, bottlenecks, and paral-

lelism. For example, bottlenecks directly impact the speed at which the data streams

flow, causing the tasks involved in the bottleneck to experience higher processing

time than expected, and as a result, causing a delay in the execution of a network

of analytical tasks. Petri-Nets can not only detect bottlenecks, but it can also help

us unfolding their causes. In the case of path deviations, our Petri-Net model allows

us to detect the data streams that have followed different paths to those expected
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to occur within a network of analytical tasks. However, our Petri-Net model is not

further discussed in this paper since it is out of the scope of this research work.

2.3.3 Data Life-cycle

In our “Analytics Everywhere” framework, the data life-cycle consists of five data

abstractions that are used to describe the data input and output of an analytical

task. They are raw, aggregated, contextualized, transformed, and extracted data.

The actual data-life cycle process will depend on the sequence of the analytical tasks

designed to support an IoT application. We expect that different IoT applications

will require specific data life-cycle processes, but will have similar data abstractions.

Definition 1. (Raw Data): The data streams D generated by IoT devices

can be defined as a sequence of tuples Ti ⊆ (T1, . . . , Tn) that contain a set of attributes

such as:

Ti = (Si, xi, yi, ti)

where

Si: is a set of attributes (i.e. measurements) obtained from an IoT device;

xi, yi: is the geographical location of an IoT device;

ti: is the timestamp t when a measurement has occurred.

These tuples represent the raw data in a data life-cycle and their main

characteristics have been previously outlined by (Hernandez et al., 2017) as one of

the following:
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• They are potentially unbounded in size and they are transported using data

packages according to a priori known time window.

• Each tuple in a data package arrives online. When the tuples are transported

in batches, they are gathered in discrete packages at periodic intervals of time.

An effective process begins by prioritizing routing data packages to a platform.

• There is no control over the order in which a tuple arrives within a data package

or across data streams; and the probability distribution of the unknown data

generation process may change over time due to its non-stationary state.

• It is not feasible to locally store a stream in its entirety since the local resources

are normally limited. This means that data tuples are active and stay only for

a limited time period in memory locally.

Definition 2. (Aggregated Data): is defined as a set of new data tuples Q

that are created by an aggregation operation Φ executed on a selected attribute (or

a set of selected attributes) of a set of original data tuples T .


∀Ti ∈ (T1, T2, . . . , Tn) : Ti = (Si, xi, yi, ti)

D = (T1, . . . , Tn)
Φ−−−−−−−−→

on attribute S
D̂ = (Q1, . . . , Qm)

∀Qj ∈ (Q1, . . . , Qm) : Qj = (Agg value1, Agg value2, . . . )

Aggregation is a mathematical operation (e.g. sum, average, count, min-

imum) that takes multiple attributes of many tuples and returns a single value.

However, some challenges still remain and they are associated with how to deter-

mine the granularity level that is needed by an analytical task and how the data

output should be structured to avoid overly aggregating the data. For example,

“Analytics Everywhere” frameworks depend on the time granularity being used at
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a compute node, which can be a priori defined (e.g. every day, every month) or

can be event-based where the time granularity is defined by when an event occurs.

Moreover, the heterogeneity of IoT devices brings a variety of granularity relation-

ships among compute nodes within an “Analytics Everywhere” framework. Bettini

et al. (1998) described them as being groups into, finer than, shift equivalent, groups

periodically into. The challenge is to design an Analytical Everywhere framework

that can handle these relationships meanwhile the tuples are being aggregated at

different compute nodes.

Definition 3. (Contextualized Data): is defined as a set of new data tuples

P that are created throughout the contextualization process using contextualization

operation Ψ to add new attributes to the original data tuples T .


∀Ti ∈ (T1, T2, . . . , Tn) : Ti = (Si, xi, yi, ti)

D = (T1, . . . , Tn)
Ψ−→ D = (P1, . . . , Pn)

∀Pi ∈ (P1, . . . , Pn) : Pi = (Si, xi, yi, ti, Context1, Context2, . . . )

Contextualization is the most complex step in a data life-cycle that is per-

formed to enrich the tuples using high level concepts accordingly to a particular IoT

application. It is crucial in transforming meaningless tuples generated by IoT de-

vices into semantically enriched data that are needed as an input to analytical tasks.

New attributes are added to each tuple that can actually represent a context that

characterizes a situation and the surroundings of IoT devices.

Definition 4. (Transformed Data): is defined as a set of new data tuples

K that are created by a transformation operation Υ executed on a selected attribute
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(or a set of selected attributes) of a set of original data tuples T .


∀Ti ∈ (T1, T2, . . . , Tn) : Ti = (Si, xi, yi, ti)

D = (T1, . . . , Tn)
Υ−→ D̈ = (K1, . . . , Kn)

∀Ki ∈ (K1, . . . , Kn) : Ki = (Trans value1, T rans value2, . . . )

Transformation refers to the replacement of an attribute by a function since

there is a need to change the scale of an attribute or standardize the values of this

attribute that belongs to a tuple. In “Analytics Everywhere” frameworks, transfor-

mation plays an important role in using categories or bins to incrementally create

new attributes that can help to advance the analytical tasks.

Definition 5. (Extracted Data): is defined as a subset of data tuples

that are extracted from a set of original data tuples T using extraction (filtering)

operation Ω; or a set of data tuples L that are created by an extraction (filtering)

operation Ω executed on a selected attribute (or a set of selected attributes) of a set

of original data tuples T .



∀Ti ∈ (T1, T2, . . . , Tn) : Ti = (Si, xi, yi, ti)

D = (T1, . . . , Tn)
Ω−−−−−−−−−−−−→

on attributes (S|x|y|t)
D′′ = (L1, . . . , Ln)

∀Li ∈ (L1, . . . , Ln) : Li = (att1, att2, . . . ), ∀att ⊂ (S, x, y, t)

2.3.4 Data Life-cycles in relation to Resource and Analytical

Capabilities

Determining how to map different analytical capabilities with the most appropriate

computing resources based on a data life-cycle of an IoT application is far from

being a trivial endeavour since several aspects must be taken into account. Not all
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analytical tasks can run on all compute nodes due to the complexity of learning

paradigms that currently exist such as deep learning, on-line learning, local learning,

and anticipatory learning, to mention a few. Moreover, it is important to point out

that an “Analytics Everywhere” framework will have limitations and real-world IoT

applications will play an important role in providing empirical evidence to validate

and improve such a framework.

In Figure 2.2 we provide an overview of our proposed “Analytics Every-

where” framework, where each cell of the grid represents the expected data life-cycle

according to analytical and resource capabilities. Overall, descriptive analytics at

the edge will be more likely to handle raw data and aggregated data; while diagnostic

and predictive analytics will be impracticable at the edge. By comparison, descrip-

tive analytics in the fog will require data contextualization tasks that will support

further extraction and transformation of data in the cloud.

On the one hand, fog resources are aimed at scaling up the processing

power of edge nodes since larger data sets will be aggregated, contextualized, and

transformed as needed for the descriptive, diagnostic, or predictive analytical tasks.

On the other hand, the data life-cycles in the cloud are dependent on the type

of data analytics that is required by an IoT application. Fog resources are not

expected to replace the cloud. In fact, predictive analytics in the cloud will deal

with contextualized, transformed and extracted data as well. We also can observe

how data aggregation will play a significant role in diagnostic analytical tasks.

One example of these permutations includes IoT applications where ana-

lytical tasks are expected to be running at edge and fog resources since network and

cloud connections are not available. For example, only 1 percent of data from an oil

rig with 30,000 sensors is currently being analyzed for anomaly detection and control

rather than optimization and prediction (Manyika, 2015). Other IoT applications in
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smart buildings and smart mobility will typically require different permutations at

all three resource levels (edge, fog, and cloud). The transit application we discuss

later in this paper is a typical example of this case.
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Figure 2.2: The matrix of data life cycle in relation to the analytical and resource
capabilities.

2.4 Analytics Everywhere Architecture

We propose an architecture in which any analytical capability is mapped into and

executed by a distributed resource architecture composed of a hierarchy of resources

available at the edge, the fog, and the cloud. The proposed architecture is illustrated
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in Figure 2.3. The aim is to support analytical tasks using a combination of different

computation resources available at the edge nodes, the fog nodes and the cloud in

order to provide meaningful information, actionable insights, and knowledge anytime

and anywhere.

This section describes a general design guidance to implement an Analytical

Everywhere framework. It consists of the following main components: networking,

storage, computation/accelerators, controller/feedback, and data stream manage-

ment/monitoring.

Figure 2.3: The proposed edge-fog-cloud architecture.

2.4.1 Networking

It is very important to choose the right networking technology for supporting a vari-

ety of IoT devices. Therefore, network standards, topology, and protocols should be

considered carefully. Network developers need to consider various networking char-

acteristics including throughput, fault tolerance, data rate, frequency band, power

consumption per bit, number of nodes (hops) per network, and nominal range. In
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order to balance the evaluations of these networking characteristics, a network topol-

ogy is vital to outline the connections between the elements in the network (e.g. IoT

devices, hub, gateways, edge nodes, fog nodes).

It is important to point out that due to the nature of our “Analytics Ev-

erywhere” framework, a comprehensive management of the entire network topology

is required including wired and wireless, and seeking access and data transfer from

the edge to core network elements. The networking connection between IoT devices

and edge nodes can support many types of connections (e.g. Wi-Fi 802.11 a/b/g/n,

LoRaWAN, Zigbee, 2G/3G/LTE Cellular) for rapid retrieval of tuples from the IoT

devices themselves as well as a broadcasting service in which a forever loop of event

time windows can be applied. One main requirement for implementing an “Analytics

Everywhere” framework is to be able to guarantee that any unbounded size of raw

generated tuples can be always transported independently from the type of an IoT

device being used.

Once the management of the entire network topology is known, the appro-

priate communication protocols need to be selected. Figure 2.4 summarizes the most

popular networking protocols and communication layers that are currently available.

The protocol stack is described from low physical layers to high abstracted applica-

tion layers.

The protocol selection will rely on the requirements related to what type of

IoT devices are going to be used, how much realtime or near realtime versus batch

processing is required, and what type of resource capabilities are available in the

network. In other words, a one-protocol-fits-all approaches cannot be applied when

implementing “Analytics Everywhere” frameworks.
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Figure 2.4: Current networking protocols supported by the “Analytics Everywhere”
framework.

2.4.2 Storage

The second component of our system architecture that needs careful evaluation is

the storage space. Indeed, the raw data tuples are constantly being generated by the

IoT devices, transmitted over the network, and accumulated gradually over time.

To find an optimal solution to storing the data is a non-trivial task when designing

a system architecture for an “Analytics Everywhere” framework. The main design

solutions are related to the following questions: (1) which type of storage method

should be applied? (2) where should the data be stored? (3) when is there a need to

store data? (4) how can high availability be provided?

The general guidelines are as follows:

• In memory vs disk storage: The mission-critical data tuples (hot data) that

need to be accessed frequently by the analytical tasks should be stored in ways
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offering fast retrieval and updates. Therefore, they should be kept in memory

of the compute nodes, while less urgently accessed data (cold data) can be

stored in a database, on disk, or in data files. Edge nodes in particular should

be used to store in-memory data only.

• Small vs medium vs large data: Edge nodes are normally lightweight with

low storage capabilities, while nodes at the fog have higher storage capability,

and nodes in the cloud have the highest storage capability. Therefore, small,

medium, and large data can be stored at the edge, fog, and cloud, respectively.

• Nodes federation: It is necessary to provide fault tolerance and high availability

for data storage in our system architecture. All the compute nodes (at the edge,

fog, and cloud) in the network can be used to aggregate and interconnect their

storage environment as a unique place where data can be partitioned into many

copy blocks and distributed everywhere in the IoT network.

2.4.3 Computation/Accelerators

The compute nodes are usually deployed covering a large geographical area and they

can be static (i.e. a fog node deployed inside a building) or dynamic (i.e. an edge

node deployed in a car). The core hardware of the compute nodes could be one or

the combination of several processing units such as GPUs, CPUs, APUs, ASICs,

FPGAs, and SoC accelerators. These computational devices can handle tasks either

in independent style or in parallel, concurrent, or distributed styles. In this paper,

three main types of shared resources based on the geo-distribution (at the edge, the

fog, and the cloud) can be used to determine the type of compute nodes that are

needed for the analytical tasks.

From the acceleration of data processing perspective, the processing power
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of the compute nodes at the edge, fog, and cloud are sorted from low to medium to

high. Therefore, nodes at the edge (static or dynamic) should be used to implement

analytical algorithms for performing lightweight tasks such as descriptive analytics

(in local scale) in order to generate new insights about the IoT device behaviors

such as communication problems and low battery. Many IoT devices are expected

to be connected to one or more edge nodes. However, high performance process-

ing capabilities at the edge are prohibitive and may cause computational resource

contention. Therefore, the accelerators at the fog can handle the heavier analytical

tasks including descriptive (in regional scale) or diagnostic to reveal the patterns

such as anomalies in the system. The highest computational capability in the cloud

allows the nodes to handle the heaviest analytical tasks such as descriptive (in global

scale), diagnostic (in long-term diagnosing), or predictive to forecast future changes

in the system.

2.4.4 Controller/Feedback

The controller/feedback is an important component in this architecture. Once the

analytical results of different analytical capabilities on the compute nodes at different

places (edge, fog, cloud) are achieved, the actions of the IoT system need to be

guided to optimize or adapt with the new change, new situation, new environment.

Therefore, the feedback, which is a relevant result of the analytical capabilities,

is pushed back from any compute nodes to order users or IoT actuators to take

immediate actions. The controller/feedback can be real time, near real time or

batch processing time depending on the place where it is computed. The criteria

to choose the ramification (real time vs near real time vs batch processing time) of

feedback is closely tied to the requirements of the application. For example, real time

feedback detects anomalies in the operational behavior of the device at the edge, or
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abnormal behavior in a traveling object’s movement detected at the fog or the cloud.

2.4.5 Data Stream Management/Monitoring

In the “Analytics Everywhere” framework, there are two main options to select a data

stream management engine: horizontal and vertical. The option chosen depends on

the requirements of the application. Horizontal deployment means that the main

components of a data stream management engine are horizontally deployed across

remote nodes. Some examples include the open-source platforms such as Apache

Flink, Apache Samza, Apache Apex, Apache Storm, Apache Spark Streaming1. In

contrast, vertical deployment not only expands their services to the edge but also

scales the data stream management components to the nodes close to the IoT devices.

This latter deployment is a new trend so there are not many unique options available.

However, some platforms can be considered such as Cisco Kinetic, IBM Watson IoT

Platform Edge, Microsoft Azure IoT Edge, or Apache Edgent2.

Streaming management can be either stateful or stateless depending on

the analytical requirements of an IoT application. Stateless streaming management

treats each event independently and creates the output only depending on the data

tuples of that event. As an example, we can use a filtering operation to filter an

incoming data stream of a transit network by a field (i.e.: busID) and write the

filtered messages to their own stream. In contrast, stateful streaming management

combines different events together and creates the output based on multiple data

tuples taken from those events. A good example of this is counting the number of

stops made at bus stations at which all buses in the transit network pull over during

1https://flink.apache.org, http://samza.apache.org/, https://apex.apache.org/,
https://storm.apache.org/, https://spark.apache.org/streaming/

2https://www.cisco.com/c/en/us/solutions/internet-of-things/iotkinetic.html,
https://console.bluemix.net/docs/services/IoT/edge/WIoTP edge.html,
https://azure.microsoft.com/en-ca/services/iot-edge/, https://edgent.apache.org/
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a day. Moreover, developers can also specify a reliability mode or management

semantics that guarantee it will provide for IoT data streaming across the entirety

of the application architecture. It is worth noting that the guarantee is not only at

the protocol level but it also can apply to the data stream management platforms.

There are three main approaches as follows:

• At most once: At most once is a euphemism for there being no correctness

guarantees that data tuples in a stream are guaranteed to be handled at most

once by all streaming operators in the application. In other words, in the event

of a failure, no additional attempts are made to re-handle these data tuples.

• At least once: At least once means that data tuples in a stream are guaranteed

to be handled at least once by all operators in the application. If the failure

happens, additional attempts will be made to re-handle these data tuples. This

approach may cause unnecessary duplication of data tuples in the streams.

• Exactly once: Exactly once means that data tuples are guaranteed to be han-

dled exactly the same as it would be in the failure-free scenario, even in the

event of various failures.

2.5 Public Transit Scenario

2.5.1 Overview of the CODIAC Transpo Service

Public transport authorities must understand the performance of transit services

to develop strategies for better transportation decision-making policies. Traditional

solutions either failed to find the answers or have been too expensive to be widely

deployed. Our “Analytics Everywhere” framework can provide automated analytical
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capabilities that rely on the most appropriate computing resources. Moreover, the

outcomes of our “Analytics Everywhere” framework can not only serve a transit

authority, but it can also support a variety of user groups such as bus drivers and

passengers who are seeking new insights to optimize their decisions and adjust their

behaviors. For example, bus drivers might be interested in knowing how their driving

performance has been for the last week while passengers would be interested in how

frequently the services are delivered on-time.

In this section, we present the CODIAC Transpo as a public transit scenario

to evaluate our proposed “Analytics Everywhere” framework. CODIAC Transpo

serves the area of Greater Moncton, Canada3. Annually, CODIAC Transpo provides

more than 2.3 million rides to transit users from Moncton, Dieppe and Riverview

Area. The transit network currently operates 30 bus routes from Monday to Satur-

day, some of which have additional evening and Sunday services. Aiming to assist

CODIAC Transpo in providing a safe, reliable, and professional transit service for

passengers, we selected the following analytical capabilities:

• Descriptive Analytics: What is currently happening with the bus services in

the CODIAC Transpo network?

• Diagnostic Analytics: Why have abnormal phenomena (e.g. congested, service

interrupted, or normal events) happened to a bus service?

• Predictive Analytics: What will likely to happen to a bus service in the near

future?

The CODIAC Transpo scenario can be described as each moving bus in the

transit network generating realtime transit data feeds which are fetched by a mo-

bile edge node installed directly in each bus. Here, descriptive analytical tasks are

3http://www.codiactranspo.ca/
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running while the bus moves around a city. Once the analytical results are locally

generated at the edge, they provide actionable information about what is happening

to a moving bus. There are several transit hubs around the city where passengers and

cargo are exchanged. At the transit hubs, the fog nodes are deployed to collect the

cleaned data streams and the descriptive analytic results from different edge nodes

whenever the buses gather there. At the fog resources, automated diagnostic ana-

lytic tasks are applied to understand why any abnormal phenomena have happened.

Finally, a private cloud infrastructure is deployed in the transit headquarters aiming

to summarize and handle the data streams from all the buses in the transit network.

Figure 2.5 illustrates the scenario developed for the CODIAC Transpo network.

Figure 2.5: The CODIAC Transpo scenario.

2.5.1.1 The Transit Feeds

In this scenario, each bus is equipped with a mobile edge node that receives streaming

transit feeds every 5 seconds containing the GPS position and telemetry data from

sensors installed in the bus. These transit data feeds consist of a sequence T1, ..., Tn
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of out-of-order tuples containing attributes in the format:

Ti = (Si, xi, yi, ti)

where

Si: is a set of attributes containing telemetry data such as the bus route

identifier, the bus route number, the vehicle identifier, the trip identifier, the start

time of a trip, and the end time of a trip. In this scenario we have a total of 17

attributes belonging to a tuple and they are listed in Table 2.2;

xi, yi, ti: are the geographical coordinates xi, yi of the device at the sampling

time ti.

The bus route 51 was selected for evaluating our “Analytics Everywhere”

framework because it has the highest trip density during a day. We have used 168,970

data tuples retrieved during a period of one week from 02/14/2017 to 02/20/2017.

According to the transit schedule, there were 66 bus trips operating each day from

Monday to Saturday and 23 bus trips on Sunday. As scheduled, each trip can take

approximately 45 minutes.

2.5.1.2 Analytical Capabilities

The descriptive analytics are expected to reveal schedule adherence patterns which

can be used by transit operators to adjust their operations such as route optimization,

schedule modification, or bus maintenance. The diagnostic analytics also provide new

insights that can assist bus drivers to change their driving behaviors to improve their

scheduled adherence to the services. Finally, predictive analytics offer global insights
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Table 2.2: The 17 attributes of the transit data feed.

ID Attribute Name Description

1. vlr id
The data point ID in the vehicle
location report table.

2. route id vlr
The route ID in the vehicle loca-
tion report table.

3. route name The route name.

4. RouteID
The route ID in the route transit
authority table.

5. route nickname The abbreviation of the route.
6. trip id br The trip ID in the bid route table.
7. transit authority service time idTransit authority service time ID.
8. trip id tta Transit authority trip ID.
9. trip start Start time of the trip.
10. trip finish End time of the trip.
11. vehicle id vab Vehicle ID.

12. vehicle id vlr
Vehicle ID in the vehicle location
report table.

13. vehicle id vlr ta Descriptive name of the bus.
14. bdescription Bus description.
15. lat Latitude.
16. lng Longitude.
17. timestamp Timestamp of the data point.

on the whole transit network such as predicting trip behavior. Table 2.3 provides

an overview of analytical capabilities and their corresponding techniques that have

been implemented for the CODIAC Transpo scenario.

Table 2.3: Analytical capabilities of the CODIAC Transpo scenario.

Analytical Capability Techniques IoT application Target Group of Users

Descriptive - Statistics - Schedule adherence Transit Operators
Diagnostic - Affinity Propagation Clustering - Abnormalities detection Bus Drivers
Predictive - Random Forest - Trip behaviors prediction Passengers

2.5.1.3 Data Life-cycle

It consists of two cycles:

• Raw data arriving at an edge node, aggregated data are transported from the

edge nodes to a fog node, and transformed data are transported from the fog
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nodes to the cloud.

• Contextualized data are transported from the edge nodes directly to the cloud.

Figure 2.6 illustrates the data life-cycle implemented for the CODIAC

Transpo scenario. The raw data tuples are generated every 5 seconds and the high

volume of tuples, belonging to each sliding time window, is kept in-memory until it

is transported to the fog node. The raw data tuples from the first time window are

cleaned and pre-processed to remove errors, redundancies, and inconsistencies; the

same tasks are performed for the next time windows in a sequential manner. The

data tuples collected for the bus route trips were then contextualized at the mobile

edge node to determine whether a bus is moving or stationary. These tuples have

been further processed and analyzed at the edge using multiple descriptive statistical

functions. From analytical results at the edge, the aggregated data were computed

and passed through the fog for further diagnostic analytic tasks while the contextu-

alized tuples were continuously sent to the cloud for prediction analytic tasks.

Figure 2.6: The knowledge/insights lifecycle from our public transit scenario.

Every 6 hours, all aggregated data were scheduled to arrive at the fog node.

Here, we ran the affinity propagation clustering algorithm over the aggregated data
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to transform them into clusters that can reveal abnormal trip behavior. Then, all

transformed data (clusters) were also sent to the cloud for prediction analytic tasks.

The cloud receives the contextualized data tuples continuously being pushed

from all the edge nodes as well as the transformed data resulting from the diagnostic

analytical nodes. Both data sources (contextualized data tuples and transformed

data) were used as input data of our random forest predicting model to predict the

trip behaviors.

2.5.2 Analytics Everywhere Architecture

The system architecture is shown in Figure 2.7. For the data ingestion, an http

POST, Wi-Fi and a 3G connection were used for rapid tuples retrieval from the IoT

devices themselves as well as a broadcasting service in which a forever loop of event

time windows can be applied. At the edge, the Cisco IR829 Industrial Integrated

Services Router was used as a mobile edge node and was installed inside a bus. The

router has an Intel Atom Processor C2308 (1M Cache, 1.25 GHz) Dual Core X86

64bit, 2GB DDR3 memory and Wi-Fi connection. This edge node handles all traffic

routing, switching, and networking using an IOx operating system, running on a

virtual machine that uses Linux Yocto (Cao et al., 2017). To collect the raw data

tuples, Gateway Management Module (GMM) and Data Control Module (DCM),

which are the integral parts of the Cisco Kinetic platform, were deployed on top of

this mobile edge node. The Cisco Kinetic platform is a scalable, open system, and

is adaptable for a variety of IoT applications. It can be used to extract, synchro-

nize, compute, and move the data tuples to the right applications at the right time

(Hernandez et al., 2017). A Message Broker was established at the edge to move the

data from the edge to fog.
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The fog node was implemented using the Cisco UCS 240 modular with a

two rack-unit (2RU) server and 2 Intel Xeon processor E5-2600 CPUs, 24 double-

data-rate 4 (DDR4) dual in-line memory (DIMMs) of up to 2400 MHz speeds, 6

PCI Express (PCIe) Generation 3 slots, and 12 large-form factor hard drives. It is

managed by the Cisco Unified Computing System Manager Software. The fog node

can host a virtual machine where an operating system can be run.

The cloud cluster is supported by Compute Canada which provides an

IaaS where we have created and allocated cloud resources such as VMs, Servers,

Storage, Load Balancers, IP addresses. Our cloud capabilities include a maximum

of 5 Instances, 40 VCPUs, 150GB RAM, 2 Floating IPs, 5TB Volume Storage. In

the cloud, we have the capability to handle the global geo-distribution of data (the

whole transit network) and we have enough computing resources to perform complex

analytical tasks. All necessary data needed for different analytical tasks are stored

and are available in the cloud. The Hadoop ecosystem, in particular Apache HBase,

Apache Zookeeper have been deployed in the cloud.

Figure 2.7: The “Analytics Everywhere” architecture implemented for our public
transit scenario.
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2.5.3 Descriptive Analytics

A contextualize function was implemented to interpret the status of a bus. The

GPS coordinates were sent to the edge node every 5 seconds. A fixed distance value

between two consecutive GPS positions of the bus was used for determining stops

and moves. This value was empirically determined for the CODIAC Transpo network

as being 15 meters. When the distance between the previous point and the current

point is more than 15 meters, the bus is moving; therefore the current point is tagged

as a move. In contrast, when the distance is less than 15 meters, the current point

is tagged as a stop.

Additionally, a temporal aggregation function was used to compute (i) the

actual time duration of a trip using the timestamps of the origin and destination

points of each trip; (ii) the total number of stops during a trip; and (iii) the to-

tal number of moves during a trip. In summary, five data fields (Trip Id, Date,

Start Time, Move Status, Stop Status, Finish Time) were used for the temporal

computations. The following function was used to implement this step:

f(m, s, t) =


M =

∑n
i=1mi if mi 6= 0

S =
∑n

i=1 si if si 6= 0

∆(t) = TD − TO

where

M, S: are the total number of moves and stops, respectively.

mi, si: are the move and stop status in each tuple.

i = 1..n: is the index of the tuple in the data stream.
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∆(t): is the total time length of the trip.

TD, TO: are the timestamps of the destination and origin tuple.

Next, we computed the average trip time in the morning (5AM-12PM),

afternoon (1PM-6PM), and evening (7PM-12AM). The average of the total number

of moves and stops was computed for the different times of the day (i.e. morning,

afternoon, evening) using the following function:

g(m, s, t) =


M =

∑n
i=1 Mi

n

S =
∑n

i=1 Si

n

T =
∑n

i=1 ∆(t)i
n

where

Mi, Si, ∆(t)i: are the total moves, total stops, and total length of time for

each trip.

n: is the number of trips during a period of time (morning, afternoon,

evening).

2.5.4 Diagnostic Analytics

The goal was to demonstrate how it is possible to diagnose the causes of abnormal-

ities, such as the interruption of services in near realtime. The affinity propagation

clustering algorithm (Frey and Dueck, 2007) was selected to detect clusters. First,

this algorithm automatically classified the clusters without prior knowledge about the

number of clusters. Second, it can allow for non-metric dissimilarities. Therefore, we

can handle non-metric space in our aggregated data. Also, the affinity propagation
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clustering algorithm is deterministic over runs. The main idea behind this algorithm

was to use a graph-based approach to let all data points collectively vote on their

preferred ‘exemplars’, which are identified as those most representative of others. It

is worth noting that implementing the affinity propagation clustering algorithm is a

typical option of many options that we can choose for diagnostic analytics.

Algorithm 1 describes our implementation of the aggregated data pulled

from the edge every 6 hours; its purpose is to discover any outliers that may in-

dicate abnormal events (i.e.: traffic congestion). The input of this algorithm is a

set of aggregated data points in which each data point contains 5 features (TripID〈
Idi
〉
, Start Time

〈
Sti
〉
, Total Move

〈
M i

〉
, Total Stop

〈
Si

〉
, Total Trip Time

〈
T i

〉
)

obtained from the edge computation after the end of each bus trip. The two most

important features, Total Move
〈
M i

〉
and Total Stop

〈
Si

〉
, are used as input for the

clustering algorithm. At the end of this implementation process, the output will

contain a set of original aggregated data points plus the cluster labels
〈
Ĉi

〉
, which

represent the aggregated information related to each trip, and a cluster that this set

of data points belong to.

2.5.5 Predictive Analytics

We have used Random Forest (RF) to build a predictive model based on the perfor-

mance benchmark carried out by Fernández-Delgado et al. (2014). Random Forest

is an ensemble learning algorithm that can be used both for classification and regres-

sion problems by combining many small, weak decision trees in parallel to form a

single, strong predictive model (Biau, 2012). Figure 2.8 depicts the predictive model

showing a number of decision trees that were created during the training phase. Each

decision tree contains a random subset of the most relevant features. When a new

data tuple comes to the prediction model, it is predicted through each decision tree
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Algorithm 1: Clustering algorithm using Affinity Propagation approach

Data: Set of U = (U1, U2, U3, ...) such that Ui = (Idi, Sti,M i, Si, T i) is the
aggregated data point

Result: Q = (Q1, Q2, ...) such that Qi = (Idi, Sti,M i, Si, T i, Ĉi) in which

Ĉ = (Ĉ1, ..., Ĉn), Ĉj = argmax[a(j, k) + r(j, k)]
1 Initialize: The Similarity Matrix S ∀j, k : s(j, k) = 0; The Availability

Matrix A ∀j, k : a(j, k) = 0; The Responsibility Matrix R ∀j, k : r(j, k) = 0;
2 Function AP Clustering(U):
3 Compute Matrix S: ∀j, k : s(j, k)← −||Vj − Vk||2 where Vj = (M j, Sj)

extracted from Uj; Vk = (Mk, Sk) extracted from Uk;
4 repeat
5 Update Matrix R:

∀j, k : r(j, k)← s(j, k)− max
k′:k′ 6=k

{a(j, k′) + s(j, k′)}

6 Update Matrix A:

∀j, k :


a(j, k)← min{0, r(k, k)

+
∑

j′:j′ /∈{j,k}
max{0, r(j′, k)}

a(k, k)←
∑
j′ 6=k

max(0, r(j′, k))

Cluster assignments:

Ĉ = (Ĉ1, ..., Ĉn), Ĉj = argmax[a(j, k) + r(j, k)]

7 until The Responsibility R and Availability Matrix A converge;

8 Q = U d|><| Ĉ
9 return Q;
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and returns the target class label. A majority-voting function was utilized to vote

the majority target class label and predict the label.

Figure 2.8: Random Forest model with majority voting.

Algorithm 2 provides details for the purpose of predicting trip behavior such

as abnormal/normal events. The algorithm inputs are the clustering data pulled from

the fog and the contextualized tuples received from the edge. The clustering data

are a set Q of data points in which each data point contains 7 features (TripID〈
Idi
〉
, Start Time

〈
Sti
〉
, Total Move

〈
M i

〉
, Total Stop

〈
Si

〉
, Total Trip Time

〈
T i

〉
,

Cluster Label
〈
Ĉi

〉
, Behavior Label

〈
Behaviori

〉
). Meanwhile, the contextualized

tuples belong to a set T ′ in which each tuple contains 17 features of the original

tuple plus the new context feature.

The first step of Algorithm 2 is to merge the two datasets together to
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Algorithm 2: Predicting algorithm using Random Forest

Data: Set of T ′ = (T ′1, T
′
2, ..) such that T ′i = (Si, xi, yi, ti, contexti) is the

contextualized tuples; Set of Q = (Q1, Q2, ...) such that

Qi = (Idi, Sti,M i, Si, T i, Ĉi, Behaviori) is clustering data
Result: Prediction model P

1 Function Merge Dataset(T’,Q):
2 G = T ′ d|><| Q using TripID and Start Time

〈
Idi, Sti

〉
; /* Left outer

join 2 datasets */

3 G = G.delete(
〈
M i, Si, T i, Ĉi

〉
) = (G1, G2, ...) such that

Gi = Si, xi, yi, ti, contexti, Behaviori);
4 return G;

5 Function Handle Class Imbalance(G, Method):
6 switch the value of Method do
7 case 1 do Upsample the minority class;
8 case 2 do Downsample the majority class;
9 otherwise do Synthesize new minority class;

10 end
11 K-fold Cross-Validation (G)→ Training set (G’) and Testing set (G”);
12 return G′, G′′;

13 Initialize: Set number of small tree Forest = int value; Get number of
features F = Random number(2 : max no feature(G′));

14 Function Build Tree(G’, F):
15 At each node:
16 f ← randomly select subset of Feature F ;
17 Split on best feature in f ;
18 return Small Tree;

19 Function Random Forest(G’, F):
20 P ← ∅
21 foreach Treei ⊆ Forest do

22 Ĝ′ ← A bootstrap sample from G′

23 pi ← Build Tree(Ĝ′, F )
24 P ← P ∪ pi
25 end
26 return P ;
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form a unique dataset that can be used for the predictive model. For this purpose,

the contextualized data tuples need to be indexed according to whether they have

normal or abnormal behavior, based on the label provided by the clustering dataset.

Therefore, we executed a left outer join operation on these datasets to form a new

unique dataset. Then, we only keep the Behavior Label on this new dataset and

eliminate the other features (TripID
〈
Idi
〉
, Start Time

〈
Sti
〉
, Total Move

〈
M i

〉
,

Total Stop
〈
Si

〉
, Total Trip Time

〈
T i

〉
, Cluster Label

〈
Ĉi

〉
) in order to avoid the

impact on the predicted result since these other features are directly correlated to

the Behavior Label.

Next, we handled another problem due to the data being outnumbered by

normal behaviors with few instances of abnormal behaviors. This might cause bias

towards the normal behaviors. Therefore, we used several solutions to balance the

dataset; we used some methods such as upsampling the minority class (abnormal

behaviors), downsampling the majority class (normal behaviors), or synthesizing a

new minority class (abnormal behaviors) based on the existing samples. Then we

applied cross validation procedure on the new dataset (training set G′, testing set

G′′) to avoid overfitting or selection bias problems.

Once the class imbalance problem is handled, a predictive model is built

based on the Random Forest approach: (i) A random number of decision trees are

built in parallel. (ii) Each tree in the forest is built using a subset of features of the

training set G′ (the features are selected randomly among 17 features plus the context

feature). (iii) Then, a bootstrap number of training samples from the training set G′

are selected to form each tree in the forest. (iv) Finally, all the trees are combined

together to form a single predictive model (see Algorithm 2).
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2.5.6 Results and Discussion

2.5.6.1 Descriptive Analytical Results at the Edge

Figure 2.9 illustrates the existence of several missing trips that have been detected

in realtime. The buses did not run on February 14th at 6 AM to 7 AM; and there

were no trips at 10 PM on the 15th, 16th, 18th. Moreover, missing trips have also

occurred on the 17th after 12 PM, on the 19th early in the morning (6 AM and 7

AM), and in the evening (6 PM to 10 PM). This is relevant information since it can

generate warnings to the transit managers as well as passengers about the current

state of the network at the trip level.

Figure 2.9: The distribution of the hourly trip times for each day of the week.

Moreover, computing the total trip time in realtime can provide relevant

information to the transit manager about the abnormalities occurring with the bus

service. For example, Figure 2.9 shows the total trip times from February 14th to

February 20th. On February 14th, the shortest trip took 897 seconds (at 10 PM of

the start time), meanwhile the longest trip took 13,468 seconds (at 12 PM of the start

time). The weather conditions were fair on that day, making such an information
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relevant as a feedback to the transit manager in order to identify the actual cause of

these disruptions on the bus service. In contrast, on February 16th the bus service

was erratic due to a snowstorm as shown by the different values of the total trips.

This information is relevant as a feedback to be provided to the passengers in such

a way that they would be able to make a decision to take a bus or to search for

another mode of transportation.

To assess the mobility patterns of bus route 51 during the week, we selected

2 trips in the morning, 2 trips in the afternoon, and 2 trips in the evening, with each

pair of trips starting at the same time in order to plot the total number of moves

and total number of stops and compare the trips (see Figure 2.10). By comparing

these two aggregation numbers of each trip during an operating date, we can find

which trip is congested/unblocked based on pace behavior by reasonably assuming

that the higher number of Stops will cause a congested trip. Figure 2.10 indicates

that bus route 51 is a busy route based on the fact that the average number of Stops

(273) in a trip is higher than Moves (189).

Figure 2.10: The comparison between the total number of Stops and Moves at dif-
ferent times during a week of observation.

2.5.6.2 Diagnostics Analytical Results at the Fog

Figure 2.11 illustrates the results obtained from running the clustering algorithm on

the aggregated data. As we can notice in this figure, there are a total of 24 clusters
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found from 419 trips accumulated from a week of data in this experiment. Most

of them - which are located in the blue diamond box (see Figure 2.11) - adhered

to the schedule, having ordinary pace behaviors. Therefore, they were labelled as

the normal trips based on the identification of the transit managers. However, there

were also some trips containing anomalous behaviors. For example, when the total

number of Moves is outnumbered by the total number of Stops, this means that the

total trip time is much shorter than usual. Hence, these trips were identified as the

abnormal trips (shown as red circle of clusters in Figure 2.11).

Figure 2.11: Overview of the clusters that were computed at the fog node.

After the clustering algorithm produced its results, a new data feature rep-

resenting the behavior label (normal/abnormal) was added to the clustering dataset.

Therefore we have now a dataset with 7 features (TripID
〈
Idi
〉
, Start Time

〈
Sti
〉
,

Total Move
〈
M i

〉
, Total Stop

〈
Si

〉
, Total Trip Time

〈
T i

〉
, Cluster Label

〈
Ĉi

〉
, Be-

havior Label
〈
Behaviori

〉
)). This clustering dataset was finally transmitted to our
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cloud environment for further predictive analytics.

2.5.6.3 Predictive Analytical Results in the Cloud

We evaluated our predictive model using 10-fold cross validation. There were a total

of 239,780 tuples used to build this model, of which 2/3 are used for the training

while the 1/3 remaining tuples are used for the testing. We then computed the

average accuracy of the model. Table 2.4 shows the several main evaluation metrics

such as accuracy, precision, recall, F1 score, and Area under the ROC Curve (AUC)

on both training and testing datasets. In comparison, the accuracy of both sets is

very similar, accounting for 96.86% (training set) and 96.85% (testing set). Similarly,

the precision score of the training set is not very different from the one of the testing

set (95.10% vs 95.08%). Also, while the recall and F1 score are the same, the AUC

differed by only 0.02% on both sets.

Table 2.4: The evaluation of our prediction model.

Accuracy Precision Recall F1 Score AUC Support

Training Set 0.9686 0.9510 0.9882 0.9692 0.9687 167846
Testing Set 0.9685 0.9508 0.9882 0.9692 0.9685 71934

Figure 2.12 illustrates the confusion matrices on both sets. As can be seen,

the type I and type II errors on both sets are very low, while the predicted condition

positive and predicted condition negative values remain very high.

We also studied to find the importance of each feature that affects the

predictive results of this model. Therefore, we visualized the importance score of each

feature in the training set. Figure 2.13 indicates some important points to improve

our model. First, the latitude, longitude, and the timestamp of a tuple are the 3

most important features that highly influence the predictive results in our model.
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(a) (b)

Figure 2.12: Confusion matrices.

Second, the first 4 features (RouteID, route id vlr, route name, route nickname) in

Figure 2.13 are almost unimportant to our predictive model. Therefore, they can be

removed during the training phase to improve our predictive results since keeping

them can introduce some noise in our model.

Figure 2.13: List of the most influential attributes in the prediction model.

To evaluate how the accuracy of the prediction model changes as a function

of the training set size, we have plotted the accuracy curve as shown in Figure 2.14 .

This plot indicates that, not surprisingly, when training data samples increase, the

accuracy of our predictive model increases.
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Figure 2.14: Accuracy of the prediction based on number of training items.

Moreover, Figure 2.15 shows the area under the ROC curve to measure the

quality of our predictive model. As can be seen, our predictive model has a very high

AUC score (0.97) indicating that it performs well as a general measure of predictive

accuracy.

At the end of the computation in the cloud, the predicted values become

the historical feedback for the transit managers, bus drivers, and passengers in order

to understand how efficient the bus service is at the transit network level during a

long period of time. In this experiment we have only used the data generated by one

bus route as an example; however, the predictive model can be applied to the whole

transit network. It is also worth noting that our model can continuously retrain and

update itself with the new datasets that are consecutively sent to the cloud and will

be used to offer better predictive results.
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Figure 2.15: Area under the ROC Curve of our predictive model.

2.5.6.4 Discussion

We can evaluate the performance of this proposal using the Service Delivery Time

(SDT) metric. SDT is computed as

SDT = TI +
n∑

i=1

TPi
+

n∑
i=1

TAi
+ TF

where

• TI : Total time the data streams are ingested in the system

• TPi
: The processing time of the task ith in the system

• TAi
: The analytical time of the task ith in the system
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• TF : The feedback time that the system emits the actionable insights to the

users or devices.

Figure 2.16 illustrates the detailed performance during a week of experi-

ments of 7 tasks to delivery the service in the cloud. They include the ingestion time

I, processing time P (P1: Eliminating Redundant Data, P2: Removing Duplicated

Data, P3: Normalizing Missing Value), analytical time A (A1: Extracting Value,

A2: Sorting, A3: Computing Stop/Move). At the current stage, we have not reached

the level of fully computing the feedback time yet, but we could assume that the

feedback time will take δ(t) (ms). Therefore, the service delivery time on our cloud

computing environment can be computed by SDT = TI +
∑3

i=1 TPi
+
∑3

i=1 TAi
+δ(t).

From our experience, it is not worth gathering all the data streams to the

cloud then processing and analyzing them in batch since (1) A massive number of

data tuples contain errors and inconsist information; almost half of the tuples used

in our implementation (Cao and Wachowicz, 2019) were deleted. In fact, processing

time in Figure 2.16 accounts for about 40% of service delivery time in the cloud.

(2) With such a large amount of unnecessary data arriving in our system, there is a

burden on our system in terms of energy consumption, bandwidth contention, and

maintenance cost. Therefore, our new “Analytics Everywhere” framework is a fresh

step forward to tackle these issues. Although further empirical experiments at the

edge and the fog need to be done in the near future, it is expected that the data

ingestion time TI will be less than shown in Figure 2.16 because we will move some

processing and analytical tasks close to the data source. Also, the data processing

time is expected to be reduce as well as the new feedback time δ(t′) < δ(t) since

the data processing and analytical tasks happen close to the data source instead of

being sent to the cloud.

74



Figure 2.16: Performance results based on service delivery time.

2.6 Conclusions and Future Work

This paper presents an “Analytics Everywhere” framework in the context of a com-

posite architectural paradigm that includes edge, fog, and cloud resources for ana-

lyzing data streams generated from the Internet of Things. The framework aims to

facilitate the design of IoT applications, bringing together in the same conceptual

framework the computational capabilities of resources and analytical tasks, taking

into account the characteristics of data life-cycles. The framework is based on the

idea that IoT applications are convenient to push the computation toward the edge

while trying to keep most of the data as close as possible to where it originated.

This presents immediate advantages that would be favourable for today’s IoT appli-

cations. It can support data privacy to a certain extent, reduce the cost to transfer

large amounts of data to data centers, and make it possible to transmit feedback

quickly to a variety of users. In contrast, it creates data management issues ranging

from data governance, data heterogeneity, to data integrity.

We have applied the proposed framework on an actual real-world scenario
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for the management of a public transit. Our lesson learned is that if any of the edge/-

fog/cloud resources of the system architecture are considered in isolation , they would

not be able to manage the IoT application, without compromising on functionalities

or performance. Still, using a combination of edge, fog, and cloud resources requires

careful coordination and a precise allocation of analytical capabilities. That is why

the a-priori mapping between analytical capabilities with the appropriate computa-

tion resources should be set up by a developer; we do not expect that a user will

take this role. Failing to achieve this mapping will have a negative impact on the

performance and accuracy of the analytics performed. More research work is needed

to determine this impact on over fitting our analytical models.

Despite the fact that PaaS/IaaS models are still an open issue in edge/-

fog/cloud computing environments in an IoT ecosystem, our prototype has outlined

the interchanging major components as being resource capability.

For future research work, we plan to extend the framework by consider-

ing security, latency, fault tolerance, and privacy requirements of IoT applications.

Regarding the IoT application, we plan to increase the requirements in the cloud

resources by adding a data visualization component, such as Kibana or Grafana.

Our current prototype is not capable of accommodating dynamic task sharing, but

this is definitely our next step. It is important to point out that our Analytical Ev-

erywhere framework does not need to be modified to support dynamic task sharing

since it relies on the assumption that tasks should be a priori allocated, exploiting

the different resources, regardless of workload balancing. Finally, more research is

needed to understand the balance between supervised versus unsupervised learning

for future reinforcement and federated learning.
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Chapter 3

An edge-fog-cloud architecture of

streaming analytics for IoT

applications

This chapter has been published in the Special Issue Edge/Fog/Cloud Com-

puting in the Internet of Things of Sensors Journal. The full citation of this

published article is:

Cao, H., & Wachowicz, M. (2019). An Edge-Fog-Cloud Architecture of

Streaming Analytics for Internet of Things Applications. Special Issue Edge/-

Fog/Cloud Computing in the Internet of Things. Sensors, 19 (16), 3594.

Abstract

Exploring Internet of Things (IoT) data streams generated by smart cities means

not only transforming data into better business decisions in a timely way but also
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generating long-term location intelligence for developing new forms of urban gover-

nance and organization policies. This paper proposes a new architecture based on

the edge-fog-cloud continuum to analyze IoT data streams for delivering data-driven

insights in a smart parking scenario.

3.1 Introduction

Internet of Things (IoT) devices are usually equipped with many sensors, ranging

from accelerometers and gyroscopes to proximity, light, and ambient sensors, as well

as microphones and cameras. For smart cities, these devices are geographically dis-

tributed and can produce an overwhelming amount of data that poses a challenge

for capturing, managing, processing and analyzing these data within a responsive

acceptable time. In particular, analyzing IoT data streams generates location in-

telligence for many IoT applications in smart cities to engage actively with their

citizens and enhance the city performance and reduce operational costs. However,

this is a non-trivial process since we need a completely new IoT architecture that

is capable of performing streaming analytical tasks running in parallel to provide

timely approximate and accurate results.

Previous research has focused on pushing the data streams generated by

IoT devices directly to a cloud environment, despite the inherited issues such as

high latency, high data rates, low fault-tolerance and the unbounded order of incom-

ing data streams (Cao and Wachowicz, 2019). Marz and Warren (2015) proposed

the Lambda Architecture, a cloud architecture that provides scalability and fault

tolerance for integration of data stream processing. The main purpose of this ar-

chitecture was to cope with both “volume” and “velocity” dimensions of big data,

which require complex computation-intensive processes to integrate streaming ana-
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lytical tasks, making it unsuitable for IoT applications (Lin, 2017). Searching for

simplicity, the Kappa Architecture was introduced to avoid using a batch processor

by replacing it with a streaming processor able to handle data streams as an ex-

tended cache of the data flow into a cloud environment (Kreps, 2014). This cloud

architecture may require larger in-memory storage space but it can be effective for

IoT applications because it can handle fast data rates and handle retention times of

the order of weeks (Wingerath et al., 2016).

However, IoT applications bring further fundamental and technological

challenges. First, the time is ripe to rethink whether cloud computing is the only

architecture able to support IoT applications, especially in the case of smart cities,

where static and mobile IoT devices will be widely embedded in city infrastructure.

It is worth investigating an overall orchestration of the computational resources avail-

able today that can take advantage of the edge-fog-cloud continuum to guarantee a

seamless execution of automated analytical tasks without compromising the accuracy

of their outcomes. Second, managing retention times between automated analytical

tasks is critical for handling high/low latency of existing data life-cycles that are

encountered when supporting IoT applications. However, the real advantage is not

at all about latency versus throughput but rather about allowing smart cities to

develop, test, debug and operate their IoT applications on top of a single analytical

framework.

This paper proposes an “Analytics Everywhere” framework that encom-

passes the edge-fog-cloud continuum to support streaming analytics for maximizing

the potential insights from IoT data streams. A new IoT architecture is proposed

based on a conceptual framework that is particularly useful for integrating IoT de-

vices using the edge-fog-cloud continuum. It consists of three elements that can be

considered as the main criteria to take into account in order to determine whether an
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edge-fog-cloud environment is required by an IoT application. They can be described

as follows:

• Resource capability: This element consists of organizing distributed compute

nodes (i.e., cloud, fog and edge nodes) that will provide a message broker, data

link, IoT device connector, data flow editor, parser, Machine Learning (ML)

libraries , in-memory data storage and power for the execution of streaming

tasks. Geographically adjacent compute nodes deployed at the edge, fog and

cloud will be usually connected through a plethora of communication networks.

• Analytical capability: This element selects the best practice methods/algo-

rithms for the orchestrated execution of analytical tasks that are vital to meet

the requirements of IoT applications. The compute nodes are needed to per-

form a priori known analytical tasks to collect, contextualize, process and

analyze data from IoT devices.

• Data life-cycle: This component describes the changes that data streams go

through during the execution of analytical tasks.

The scientific contributions of this paper can be summarized as follows:

• Most of the IoT architectures rely on a cloud environment in which n-tiers

of horizontal layers are designed to perform analytical tasks. Our approach

proposes a new architecture based on an integrated fabric of compute nodes

that are designed to work together to perform many analytical tasks, which

are triggered by IoT data streams transported through an edge-fog-cloud con-

tinuum.

• Automated analytics for IoT data streams is still in its infancy and applica-

tions usually require a diverse number of outputs having different temporal
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granularities. There has been very little research reported on the impact of

analytical tasks in the IoT architectures. The scientific contribution of our

research is therefore to ascertain this impact using a smart parking scenario.

The remainder of this paper is organized as follows: Section 3.2 reviews

the existing architectures, processing and analytical frameworks for handling IoT

data streams. Section 3.3 introduces the main concepts of our proposed “Analytics

Everywhere” framework. Section 3.4 describes the developed IoT architecture for

analyzing the incoming data at anywhere and in anytime. Section 3.5 describes

the smart parking scenario used to validate the proposed architecture. The main

outcomes of the analytical tasks are shown in Section 3.6. Section 3.7 concludes our

research and discusses further research.

3.2 Related Work

It is challenging to analyze vast amounts of incoming IoT data streams. Over 400

architectures have been proposed in the literature to handle incoming IoT data

streams using different strategies such as stream, micro-batch and batch processing

(Wingerath et al., 2016; Cao and Wachowicz, 2017). The most important issue in

selecting an IoT architecture is to balance the trade off between throughput and

latency. However, most approaches to handle this trade off are based on a cloud

computing environment where IoT data streams are pushed to and accumulated

over a long period of time and are later processed and analyzed in batches.

Batch-oriented processing frameworks have been efficiently used for process-

ing large amounts of historical IoT data with high throughput but also with high

latency. For example, one of the most common and widely used cloud architectures
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for batch-oriented processing that supports distributed storage across many clusters

of commodity servers is the Hadoop MapReduce framework (Dittrich and Quiané-

Ruiz, 2012). Another example is Spark (Zaharia et al., 2016) which has the ability

to perform large-scale batch processing in memory using resilient distributed data

sets.

Aiming to increase efficiency, micro-batch frameworks buffer and process

IoT data streams in batch. For example, Spark Streaming restricts the batch size

in a processor where each batch contains a set of events that arrived online over the

batch period (regardless of the event’s time). However, it will obviously increase

the time the data streams spend in the data pipeline. In contrast, stream-oriented

frameworks typically provide time-sensitive computations but have relatively high

data processing costs on a continuous stream of IoT data. Stream-oriented processing

architectures usually avoid putting data at rest. Instead, they minimize the time a

single tuple should spend in a processing pipeline. Some typical stream processing

frameworks are Storm, Samza and Flink (Toshniwal et al., 2014; Carbone et al.,

2015; Noghabi et al., 2017).

From an analytics perspective, IoT data streams that are accumulated for

a long period of time can be analyzed in batches using traditional algorithms in

machine learning and data mining such as clustering, classification, regression and

dimensionality reduction, to name a few. For example, Ismail et al. (2018) proposed

a MapReduce based mining algorithm to facilitate Parallel Productive Periodic Fre-

quent Pattern mining of health sensors data. Ta-Shma et al. (2018) also described

an attempt to ingest and analyze IoT data streams using open source components.

Their simplified architecture is a combination of several instances that install an

event processing framework, a batch analytics framework, a data storage framework

and a message broker to handle both batch and streaming data flows. Santos et al.
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(2018) proposed an e-health monitoring architecture based on sensors that rely on

cloud and fog infrastructures.

Recently, a paradigm shift has emerged in the evolution of IoT architec-

tures aiming at analytics, software and platform configuration. Streaming analytics

algorithms are being developed to extract value from IoT data streams as soon as

they arrive at a computational resource. However, it is a non-trivial task to extract

insights online, since the nature (or distributions) of IoT data streams change over

time due to the geographical location of IoT devices (De Francisci Morales et al.,

2016). Moreover, streaming analytical algorithms must work within limited resources

(time and memory). Some open source frameworks for IoT data stream analytics are

being developed including MOA, SAMOA and skit-multiflow (Montiel et al., 2018;

Morales and Bifet, 2015; Bifet et al., 2011) using only streaming processors.

Our proposed architecture is a step forward in finding a unique solution

that combines the advantages of different computational resources into an integrated

edge-fog-cloud fabric that is capable of capturing, managing, processing, analyzing

and visualizing IoT data streams. This fabric of computational resources is de-

signed to work towards an asynchronous approach for supporting an “Analytics Ev-

erywhere” framework (Cao et al., 2019) making the development, deployment and

maintenance more pragmatic and scalable. By breaking down the processing and

analytical capabilities into a network of streaming tasks and distributing them into

an edge-fog-cloud computing environment, our proposed architecture can support

streaming descriptive, diagnostic and predictive analytics.
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3.3 Analytics Everywhere Framework

We propose an “Analytical Everywhere” concept as a conceptual framework that

integrates a variety of computational resources for a flexible orchestration platform

that has functionality around containers. The primary goal is a seamless and au-

tomated execution of automated analytical tasks founded on a data life-cycle of an

IoT application. This framework consists of three elements: Resource Capability,

Analytical Capability and a Data Life-cycle which are described in more detail in

the following sections.

3.3.1 Resource Capability

In general, an IoT application will require a combination of different compute nodes

running at the edge, fog and/or cloud. The main criteria to take into account when

selecting a compute node have been first introduced by Cao et al. (2019). They are

described as follows:

• Vicinity: The geographical proximity of compute nodes to an IoT device is an

important criterion to take into consideration for an IoT application. Since IoT

devices can be static (i.e., deployed inside a building) or mobile (e.g., deployed

in a car) and their distance to a compute node might vary, our “Analytics

Everywhere” framework is based on the principle that IoT devices are related

to everything else. Therefore, compute nodes near IoT devices are more closely

related than distant ones (First Law of Geography). In particular, edge nodes

should be located near the IoT devices and should use short-range networks

for the data streams.
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• Reachability: The time to reach a compute node via a network varies accord-

ingly to the type of IoT devices and the communication network. Typically, if

a compute node is connected to the Internet with a fixed IP address, this can

be considered a highly reachable resource (i.e., it takes relatively little time to

reach the compute code), rather than if it is connected using a private network

and behind a NAT.

• In-memory and storage: This criterion handles the amount of data in a compute

node that should be kept in memory or stored in a database. The retention

time of IoT data streams is expected to vary according to the IoT application

requirements as well as the available memory size. The final decision will also

depend on the bandwidth and the throughput required by an IoT application.

The actual amount of data which has been transmitted varies, as there could

be many different factors (i.e., latency affecting throughput). The latency is

clearly low at the edge due to the proximity to the IoT devices and increases

as we move to the cloud.

• Computation: The amount of processing power available at a compute node for

performing a set of automated analytical tasks. Taking into account the IoT

application requirements can help in making a decision about which compute

node to use for executing these tasks.

• Standardization: This aspect represents the most important criterion yet to

be met in the implementation of IoT applications. Different standards can

be applied in an IoT application ranging from network protocols and data-

aggregation to security and privacy standards.

While computation and memory capabilities can increment as the analyt-

ical tasks are executing from the edge to the cloud, reachability must be always
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considered for an analytical task. Reachability is a critical dimension that requires

analytical tasks to return results in a timely way, dependently of computational re-

sources. Because fog nodes play the role of the intermediate resources that seamlessly

integrate edge and cloud resources, the resource contention in the compute nodes and

the communication links can be easily eliminated. In contrast, the proximity of the

edge nodes to IoT devices can assist the necessary scaling of IoT applications, turn-

ing them into an essential computational resource for supporting near or real-time

data analytics. Nevertheless, the immaturity of standards in edge resources and IoT

devices are currently impeding the implementation of IoT applications.

3.3.2 Analytical Capability

We propose an “Analytics Everywhere” framework that can be applied to develop

a variety of analytical tasks to perform descriptive, diagnostic and predictive ana-

lytics using IoT data streams. Streaming analytics are used to provide higher-level

information about IoT data streams at the edge, the fog or the cloud. The aim

is to generate new insights as demanded by an IoT application in order to answer

the questions: “What is happening in the real-world?” (Streaming Descriptive An-

alytics); “Why is it happening?” (Streaming Diagnostic Analytics) and “What will

happen?” (Streaming Predictive Analytics). The main goal of our “Analytics Ev-

erywhere” framework is to automate a priori known analytical tasks that will be

executed at the edge, the fog and the cloud in order to answer these questions.

Figure 3.1 illustrates some analytical tasks that may be required for sup-

porting an IoT application (green node: analytical tasks performed at the edge;

orange node: analytical tasks performed at the fog; blue node: analytical tasks per-

formed at the cloud). The analytical tasks have different levels of complexity and

require a suitable data life-cycle to support multiple paths of computation ranging
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from data cleaning and data aggregation tasks that require a continuous stream of

data, to more complex tasks such as data contextualization and data summarization

tasks that require accumulated data streams for time-sensitive results. Streaming

descriptive analytics may be performed at the edge, the fog and the cloud; however,

we anticipate that they will more often be executed at the edge because (i) IoT data

streams have tiny volume at the edge and (ii) many IoT applications will prevent

data from being moved to a cloud due to privacy and costs concerns.

Data 
Ingestion

Data 
Contextualization

Data 
Contextualization

Data 
Clustering

Data 
Summarization

Data 
Classification

Data 
Prediction

Data 
Cleaning

Data 
Filtering

Descriptive 
Statistics

Predictive 
Analytical Tasks

Diagnostic
Analytical Tasks

Descriptive 
Analytical Tasks

Dataflow

Analytical Capability 

Figure 3.1: Overview of streaming tasks

Streaming diagnostic analytics can be executed near to or far from an IoT

device, depending on where it is more feasible to install relatively powerful compu-

tational resources. Streaming diagnostic analytical tasks are usually supported by a

few on-line algorithms, stream clustering algorithms, ad-hoc queries and continuous

queries. Fog and cloud resources are expected to be used to perform streaming di-

agnostic analytics since they provide computation, storage and accelerator resources

that are more suitable than edge nodes to perform the streaming tasks. Fog and

cloud computing can improve the accuracy and reduce the computational complex-

ity of the automated tasks in near real-time. Streaming predictive analytics requires

on-demand analytical tasks with high availability and rapid elasticity through the

virtually unlimited resources of the cloud; the analytical tasks are expected to use

a huge amount of historical IoT data that need to be processed according to the
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nature of IoT applications.

3.3.3 Data Life-Cycle

We expect many types of data life-cycles depending on the types of analytical tasks

and compute nodes needed by an IoT application. Therefore, a data life-cycle can

be either stateful or stateless depending on the orchestration requirements of an IoT

application. A stateless data life-cycle treats each analytical task independently and

creates output data tuples depending only on the input data tuples of that analytical

task. On the contrary, stateful data life-cycles combine different analytical tasks

together and create the output data tuples based on multiple input data tuples taken

from those analytical tasks. Moreover, data scientists must also specify a reliability

mode that can follow three approaches:

• At most once: There is no guarantee that data tuples in a stream are being

handled at most once by a streaming task of an IoT application. If a failure

takes place at the edge, fog or cloud nodes, no additional attempts are made

to re-handle these data tuples. The assumption is that the throughput (i.e.,

the actual amount of data that has been transmitted between compute nodes)

exceeds the maximum bandwidth. In other words, there could be different

factors such as latency affecting throughput.

• At least once: The data tuples in a stream are guaranteed to be each handled

at least once by all streaming tasks of an IoT application. If a failure hap-

pens, additional attempts are needed to to re-handle these data tuples. This

approach may cause unnecessary duplication of data tuples in the streams but

it has been widely adopted for cloud processing (e.g., Storm and Samza).
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• Exactly once: Exactly once means that data tuples are guaranteed to be han-

dled exactly the same as they would be in the failure-free scenario, even in the

event of various failures.

The edge-fog-cloud continuum brings a high complexity in connecting and

in orchestrating several compute nodes; therefore our “Analytics Everywhere” frame-

work currently supports a stateless data life-cycle having the “at most once” approach

for guaranteeing low latency for running analytical tasks of an IoT application. Two

main computation paths can be found in our data life-cycle:

• Computation Path 1: analytical tasks that need user-defined Windows (batches)

for accumulating data streams in order to generate outputs. Data aggregation

and clustering are examples of analytical tasks that require this type of path,

also called batch processing.

• Computation Path 2: analytical tasks that run using continuous data streams

in order to generate outputs. Some examples of analytical tasks include data

cleaning, data filtering and data duplication. This path has also been previ-

ously referred to as stream processing.

More information about how these computation paths have been applied

to a Smart Parking application can be found in Section 3.5.2.

3.4 The Streaming IoT Architecture

Resource capabilities play an important role in designing an IoT architecture that

relies on the edge-fog-cloud continuum for running automated analytical tasks that
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have a data life-cycle with streaming data tuples as input and output. We propose

a geographically distributed network of compute nodes that have a combination

of modules including Admin/Control, Stream Processing & Analytics, Run Time,

Provision & Orchestration, and Security & Governance (Figure 3.2). Our IoT ar-

chitecture enables micro-services to run at various compute nodes in such a way

that each micro-service can perform a specific analytical task depending on which

module it belongs to. It is important to point out the essential role of the Admin/-

Control module of our IoT architecture, since it optimizes the data flow in order to

implement a data life-cycle that takes into account the individual requirements of an

IoT application. Therefore, we have also integrated data management, visualization,

orchestration, and security modules in our IoT architecture.

Figure 3.2: The proposed Internet of Things (IoT) architecture for our “Analytics
Everywhere” framework.
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3.4.1 Stream Data Tuples

We propose an IoT architecture focusing on processing data streams which are de-

fined as a sequence of tuples that usually contain attributes such as:

{[T1 = (S1, x1, y1, t1)], [T2 = (S2, x2, y2, t2)], ..., [Tn = (Sn, xn, yn, tn)]}

where

Sn: is a set of attributes (i.e., measurements) obtained from an IoT device;

xn, yn, tn: is the geographical location of an IoT device at the timestamp tn

when a measurement has occurred.

The main characteristics of tuples can be described as one of the following:

• Each tuple in a stream arrives online. An effective architecture begins by

prioritizing routing the streaming data tuples to the distributed compute nodes.

This is achieved by keeping records of the ingestion times when a tuple arrives

at compute nodes located at the edge, the fog or the cloud.

• An architecture has no control over the order in which a tuple arrives at a

compute node. When an analytical task is automated and continuous queries

are needed by an IoT application,the ingestion times play an important role

in making sure all streaming data tuples implicitly belong to a user-defined

window. In other words, the order of the tuples coming from an IoT device

does not matter; however the order of the ingestion timestamps matter because

we should not have a tuple arriving at the cloud and having an earlier ingestion

timestamp from a tuple arriving at the edge.
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3.4.2 Main Processing Modules

The main modules can be categorized as Run Time, Stream Processing & Analytics,

and Admin/Control.

3.4.2.1 Run Time

Message Broker: In our IoT architecture, the message broker is a soft-

ware/middleware computer program module that reliably routes mes-

sages between clients using a formal messaging protocol and providing

metadata about connected clients such as the data they are streaming

and/or the actions they expose with guaranteed QoS delivery. They can

also communicate with other modules, such as queries, Data Flow Ed-

itor, In-memory Databases and applications such as enterprise apps or

analytical dashboards.

Data Link: A data link is a wrapper with a domain-specific library or

functionality, that is exposed to the communication network. A data

link provides an interface to access streaming data tuples from different

data sources and sinks into and out of the compute nodes. It can be a

device link, bridge link or an engine link. The device data links allow the

capability to connect specific IoT devices together (e.g., WeMo devices,

beacons, sensors). The bridge data links offer two-way communications

with other publish-subscribe protocols (e.g., MQTT, AMQP, STOMP).

The engine data links contain logic functions/drivers or provide access to

the processes that provide specific functionality (e.g., JDBC, ODBC).

IoT Device Connector: This module manages the network connection
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between IoT devices and compute nodes. There are two main options to

deploy device connector modules depending on the requirements of an

IoT application: they can be described as a horizontal or as a vertical

option. In the horizontal device connectors, the main components of

a data stream management platform are horizontally deployed across

remote nodes. In contrast, vertical device connectors not only expand

their services to the edge but also scale the data stream management

components to the nodes close to the IoT devices. In our architecture,

we combine both horizontal and vertical options to guarantee a unique

architecture based on a network of IoT devices and compute nodes.

3.4.2.2 Stream Processing & Analytics

Data Flow Editor: The data flow editor is a visual data manipulation

environment for wiring together IoT devices, APIs and services. It allows

developers to create a data-flow model based on a set of programming

blocks that perform the assigned analytical tasks when requirements are

met. A data-flow model can be considered as a broker client because it

can subscribe to data from different data sources and publishes results

to the broker. Therefore, the data flow editor is designed to support a

data-flow model to be deployed to the run time in a convenient manner.

Parser: The streaming data tuples can continuously bounce from one

compute node to another. The goal of the parser module is to transform

or serialize the tuples into a series of bytes to be stored or transmitted

across a network then reverse or de-serialize them back to their origi-

nal form when they reach their final destinations. Therefore, the data

streams need a syntax for storing and exchanging data that is not only
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convenient for developers to read and write but also easy for machines to

parse and generate.

Machine Learning Library: The main element of this module is the On-

line Learning Library. In contrast to batch machine learning which trains

the input data, builds and evaluates the model as a bundle, the Online

Learning Library is used to evaluate the current streaming data on-the-

fly as they enter the compute node, and to gradually build the learning

model based on the incoming data tuples over time.

Processing Library: This engine mainly deals with the continuous arrival

of data tuples. It includes the Complex Event Processing (CEP) com-

ponent and Structured Streams Processing (SSP) component to man-

age and transform the raw data tuples. The SSP component is used to

build programs that implement operations and analytical tasks on data

tuples (e.g., cleaning, filtering, updating state, defining windows, aggre-

gating). The CEP component allows us to detect event patterns in an

endless stream of events.

3.4.2.3 Admin/Control

Data Visualization: This module provides two main services: the moni-

toring service and the exploring service. The monitoring service is used

to plot real-time data whenever they arrive at our system, with the aim

of early detection of abnormalities. The exploring service plots pro-

cessed/historical data with the aim of assisting us with analysis and

discovering new insights.
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In-Memory Data Storage: The in-memory storage space is where the in-

coming data tuples and/or the results of the analytical operations reside.

The storage space can be different types of in-memory databases (e.g.,

document-based store, key-value store) or an in-memory file system.

3.5 Validating the Proposed Architecture

In this section, we validate our proposed architecture using a smart parking appli-

cation. We describe in detail the software components used to implement the main

modules in the integrated edge-fog-cloud fabric. Also, the data life-cycle implemen-

tation and the IoT data streaming mechanism between each nodes in the architecture

are explained in detail.

3.5.1 Smart Parking Application

A smart parking application was selected to evaluate our IoT architecture because it

combines communication and information technology to help drivers find available

parking spaces. Studies have shown that integrating smart parking into the city

framework can shorten parking search time, reduce emissions and fuel consumption

and decrease traffic congestion. The application consists of IoT data streams gener-

ated in real-time whenever a driver parks his/her car and uses the mobile application

of the HotSpot Parking system which is being used in the city of Saint John, NB,

Canada (Figure 3.3). The data streams are fetched by the edge nodes which are

geographically installed close to the pay station facilities in the city. Afterward, the

data streams are sent to a fog node located at City Hall. Finally, the data arrives

at a Data Center provided by Compute Canada West Cloud as the IaaS resource,
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located in Vancouver. They are configured to communicate together as a network of

nodes. The detailed specifications of each compute node are available in Table 3.1.

Table 3.1: The overview of the compute nodes.

Edge Node Fog Node Cloud Node

OS Ubuntu Mate Window Server CentOS 7.0 (x86 64)
CPU ARM Cortex-A53 Intel Xeon E5-2623 v3 Intel Xeon E5-2650 v2
# of Core 4 (1.4 GHz 64-bit) 4 (3.00 GHz 64-bit) 8 (2.60 GHz 64-bit)
RAM 1 GB 30 GB 30 GB
Disk 32 GB 1 TB 1 TB
Hardware Raspberry Pi 3 B+ Commodity Server Virtual Machine

Figure 3.3: Geographical Distribution of the edge-fog-cloud nodes for the smart
parking application.

Different modules have been used to implement an integrated edge-fog-

cloud fabric of compute nodes for the Smart Parking application. We have imple-

mented a variety of open source modules and commercial software packages to deploy

the proposed IoT architecture. Each of them plays an important role as a module

in the overall architecture. The implementation is illustrated in Figure 3.4.
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Figure 3.4: Implementation of the architecture for the smart parking application.

The software used for this implementation are summarized in Table 3.2

below.
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Table 3.2: Software used for the modules implementation.

Message
Broker

RabbitMQ: It is an open source streaming platform that supports
different message brokers to provide fault-tolerant, scalable, high-
throughput and low-latency data pipelines of queuing real time IoT data
streams using a publish-subscribe mechanism.

R
u
n

T
im

e IoT
Device
Connec-
tor

Cisco Kinetic: This is a scalable, secure commercial system that can be
used to extract, compute and move the data tuples to the right applica-
tions at the right time. There are three integral parts of the Cisco Kinetic
platform: Edge & Fog Processing Module (EFM), Gateway Management
Module (GMM) and Data Control Module (DCM).

Data
Link

Cisco Kinetic Connector: As a feature of EFM, Cisco Kinetic Con-
nector provides a wide array of data links developed by Cisco, Third
Party, and Open Source Community. It supports connectivity between
compute nodes, message brokers, and IoT devices.

S
tr

e
a
m

P
ro

ce
ss

in
g

&
A

n
a
ly

ti
cs

Data
Flow
Editor

Cisco Kinetic Dataflow Editor: This is a feature in EFM that can
be used to customize, modify, and manage data flows with a graphical
layout. It also offers a convenient interface to create and debug data
flows.

Parser JSON parser: JSON objects are mainly exchanged between the com-
pute nodes in our system. Therefore, the parser is used to encode the
data structures to JSON strings and decode them back to dictionary,
list, tuple, boolean or other numerical data types.

Stream
ML
Library

Scikit-Multiflow: It offers main packages to assist the users with han-
dling and learning from their data streams such as stream generators,
learning methods, change detectors, and evaluation methods.

Processing
library

Python: For dealing with structured incoming data streams and de-
tecting different data patterns, we have developed the algorithms to take
action when the events happen. A variety of built-in Python libraries,
such as numpy and scipy, were used to develop our algorithms.

In-
memory
Database

RethinkDB: It is an open-source, distributed document-oriented
database for real time changing feeds. It allows the developers to push
the continuous queries to retrieve the results in real time using ReQL
query language.

A
d
m

in
/
C

o
n
tr

o
l Visualization

(Histor-
ical
Data)

Superset: Aiming to extract the insights from the historical/processed
data, we have employed Superset, which is a new ongoing incubation at
the Apache Software Foundation.

Visualization
(Real-
time
Data)

Grafana: It is an open-source platform capable of monitoring and an-
alyzing the dynamic data incoming from IoT devices, which we used for
our streaming real-time data.

P
ro

v
is

io
n

&

O
rc

h
e
st

ra
ti

o
n Aiming to mitigate difficulties in managing, distributing and up-

dating the system, we have installed Apache Ambari and Apache
Zookeeper in our network of compute nodes. The Apache Ambari
package is then used to configure and install the other main modules
of our IoT architecture.

S
e
c
u

ri
ty

&

G
o
v
e
rn

a
n

c
e For the security, we have also configured Wazuh which is an open

source system for integrity monitoring, and threat and intrusion de-
tection to protect our compute nodes. It consists of many functions
such as security analytics, vulnerability detection, file integrity
monitoring, and configuration assessment.
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The “Analytics Everywhere” framework is implemented to assist Hotspot

in providing a more convenient, reliable, and professional parking service for drivers,

and to assist the City of Saint John, Canada improve their parking facilities. We

have selected the following analytical capabilities:

• Streaming Descriptive Analytics: What is the problem with smart parking in

Saint John?

• Streaming Diagnostic Analytics: Why are these parking usage/frequency pat-

terns an issue in Saint John?

• Streaming Predictive Analytics: What could be improved in the future?

3.5.2 Data Life-Cycle Implementation

Mapping between analytical tasks and compute nodes (edge-fog-cloud continuum)

for executing a data life-cycle is a non trivial task because it requires careful orches-

tration and a precise allocation of resources. To ease the complexity of the mapping

process, a data life-cycle describes the changes that stream data tuples go through

during the automated execution of analytical tasks. The Smart Parking application

requires a unique data life-cycle as shown in Figure 3.5. Moreover, all of the analyt-

ical tasks are fully triggered and performed in an automated manner as soon as the

stream data tuples arrive at any compute node.
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Figure 3.5: Overview of the implemented data life-cycle.

3.5.2.1 Analytical Tasks in Continuous Data Streams

The data ingestion task deployed at an edge node will retrieve parking data by

defining a forever loop to iteratively trigger this task every 5 s. A raw streaming

data tuple is considered a parking space event which will be sent to the closest edge

node. The parking data streams consist of a set {T1, . . . , Tn} of out-of-order tuples

containing attributes in the format:

Ti = 〈PEi, SEi〉 (3.1)

where:

• PEi: a specific parking event containing 4 attributes {spot id, length, start-

Time, vehicle id} described in Table 3.3.

• SEi: a parking spot entity where the parking event is happening. It contains
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3 attributes {lat, long, spot name} described in Table 3.3.

Table 3.3: The description of data tuples.

Data Fields Attribute Name Description

Parking Event

spot id The parking spot ID in the parking event table
length Total parking duration (hours) when a driver parks his/her vehicle
startTime A timestamp indicating the start time of the parking process
vehicle id Vehicle ID in the parking event table

Spot Entity
lat Latitude of the parking spot
long Longitude of the parking spot
spot name The conventional name of the parking spot given by the City

The raw data tuples obtained after the data ingestion task will be forwarded

to the data cleaning task, which consists of a sequence of operations including assess-

ment, detection, repairing, and validation. The assessment process can detect and

identify errors, redundancies, missing values, incomplete tuples, and inaccurate data

fields. The tuples are re-organized, replaced, repaired or removed using adaptive in-

tegrity constraints in a dynamic sense to ensure data quality. Finally, validating the

accuracy of the data tuples once they have been cleaned is an important operation

before passing them to the next analytical task.

The attributes of a cleaned data tuple are later grouped into two new data

fields (Parking Event and Spot Entity). Our new data tuple now becomes a set of

attributes {T ′1, . . . , T ′n} in which each T ′i = 〈s1, . . . , s7〉|i contains a vector of 7 corre-

sponding attributes {spot id, length, startTime, vehicle id, lat, long, spot name}.

We have implemented an autonomous script to logistically apply adaptive

integrity constraints to handle missing attribute’s values and tuples, to remove dupli-

cate tuples and redundant attributes, and to repair incorrect attribute values. The

cleaned tuples are then transferred to the data filtering task as illustrated in Figure

3.5.

The data filtering automatically derives a subset of data from the original
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one using a set of criteria or extraction (filtering) operations. After finishing the data

filtering task, the extracted data will be transferred to the data contextualization

task to create new attributes and attach them to the original data tuples T using a

contextualization operation Ψ as in Equation (2).


∀T ′i ∈ (T ′1, T

′
2, . . . , T

′
n) : T ′i = 〈s1, . . . , s7〉|i

D = (T ′1, . . . , T
′
n)

Ψ−→ D = (P1, . . . , Pn)

∀Pi ∈ (P1, . . . , Pn) : Pi = (Si, xi, yi, ti, Context1, Context2, . . . )

(3.2)

The data contextualization task has been implemented at the edge to handle the

current incoming data tuples and at the fog node to handle the outdated data tuples

as described in Figure 3.5. A function was implemented to interpret the status

(occupied or empty) of a parking spot whenever a driver parked his/her car.

f(T ′) =


T ′ = T ′ ∪ s8 where s8 = Occupied

T ′ = T ′ ∪ s9 where s9 = startT ime+ length

T ′ = T ′ ∪ s10 where s10 = edge arrivingT ime

• Whenever a tuple arrives at the edge, we create an event label as Occupied and

attach to the original tuple to mark that a parking spot is in use.

• We compute the endTime using the startTime and the parking duration length.

The parking duration is the one paid by the customer.

• We also add the arriving time edge arrivingTime whenever a tuple arrives at

an edge node.

After the contextualization task at the edge has been executed, three new

attributes s8, s9, s10 are attached to the original tuple. The contextualized tuples be-

come T ′i = 〈s1, . . . , s10〉|i containing a vector of 10 attributes {spot id, length, start-
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Time, vehicle id, lat, long, spot name, event, endTime, edge arrivingTime}.

This new contextualized tuple will be transmitted to the fog node where a new at-

tribute, s11, will be added for registering the ingestion time. At the fog, this Occupied

data tuple is duplicated for two main purposes: (1) one copy of the Occupied data

tuple is transmitted to accumulated data streams for further analytical tasks; (2)

the other Occupied data tuple copy temporarily resides at the in-memory database

for deducing other events.

In this smart parking application, outdated and current incoming Occupied

data tuple are the important elements to determine the status of a parking event

whenever a driver parked his/her car. We aim to infer whether an Empty event or

an Occupied event is occurring at a specific parking spot.

The Empty event is also computed at a fog node as shown in Figure 3.6.

The computation consists of the following steps:

• When a contextualized tuple T ′i−1 with an Occupied status arrives at the fog,

it is treated as an outdated tuple and retained in database (RethinkDB) until

a new tuple T ′i of the same parking spot arrives. To detect the changes in our

real time database, we have implemented an adhoc query using ReQL language

to continuously monitor the incoming tuple as follows.

Description ReQL Statement

Monitoring the feed if any new object changes on a table

r.db(‘spdb’).
table(‘raw historical table’).
changes.run(conn).
each{|change| p(change)}

• The new tuple T ′ with an Empty status is initially computed by mirroring

some static attributes from the incoming tuple T ′i including {spot id, lat, long,

spot name, edge arrivingTime}. Then, the startTime of tuple T ′ is assigned
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by the endTime of tuple T ′i−1 while the endTime of tuple T ′ is assigned by the

startTime of tuple T ′i . The length of tuple T ′ is then computed by subtracting

its endTime from its startTime. Finally, the fog arrivingTime of tuple T ′ is

attached at the end of the Empty tuple creation task. The following query

command is used to retrieve the outdated Occupied tuple that temporarily

resided in RethinkDB for this task.

Description ReQL Statement

Query the outdated “Occupied“ tuple
that temporarily resided in RethinkDB

r.db(’spdb’).
table(’raw historical table’).
without(’id’, ’edge arrivingTime’, ’fog arrivingTime’).
filter({“spot id“: str(item[’spot id’]), “event“: “Occupied“}).
order by(r.desc(’startTime’)).limit(1).run(conn)

T’i

T’i-1 T’i

{spot_id, length, startTime, vehicle_id, 

lat, long, spot_name,

 Occupied, endTime, edge_arrivingTime}

T’i-1

Contextualized at the edge 

& 

Transmitting to the fog 

Timestamp

tt-1 t+1

Timestamp

At the Edge

At the Fog

This tuple is temporarily 

resided at the fog until 

new tuple come
T’

{spot_id, length, startTime, vehicle_id, 

lat, long, spot_name,

 Empty, endTime, edge_arrivingTime, 

fog_arrivingTime}

Figure 3.6: The process of computing an Empty event at the fog.

Once the data query task and the Empty event creation task at the fog are

completed, all outdated Occupied data tuples, current incoming and new tuple will

contain a vector of 11 attributes 〈s1, . . . , s10, s11〉 corresponding with {spot id, length,

startTime, vehicle id, lat, long, spot name, event, endTime, edge arrivingTime,

fog arrivingTime}. These event data tuples will be transmitted to the data sum-

marization task at the fog and the data prediction task in the cloud for further
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analytics as indicated in the lifecycle in Figure 3.5.

3.5.2.2 Analytical Tasks in Accumulated Data Streams

As aforementioned in Section 3.3, streaming descriptive statistics task can be im-

plemented using frequency measurement, central tendency measurement, dispersion

or variation measurement, and position measurement. We chose the first approach,

which implements the analytical task using frequency measurement for the smart

parking application. The aim of this task is to show how often the parking event oc-

curs by showing the parking frequency at each spot id grouped by vehicle id. We also

analyze the parking behavior of the driver by statistically computing the parking us-

age of each vehicle. At the edge, the data stream can be configured to be accumulated

at different time granularity (i.e., every 10 min).

The data aggregation task is executed at the fog in order to count how

many times each parking spot was occupied every hour, day or month. We have

implemented a Python script to trigger the data aggregation task. For example, after

each hour, a set of individual summaries {Q1, Q2, . . . , Qk} will be produced in which

each Q contains 4 main attributes including {spot id, lat, long, parking frequency}.

The aggregated data of this task are pushed to the data clustering task for further

analytics.

The aim of the data clustering task is to demonstrate how it is possible

to diagnose if an incident or event occur at the fog in near real time manner. To

detect an occurrence, we build an algorithm based on the Hierarchical Agglomerate

Clustering (HAC) (Müllner, 2011) approach to cluster the temporal dimensions from

the incoming aggregated data. We choose to implement this unsupervised learning

method at the fog because it can work independently and automatically without any
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human interference. The HAC method starts by partitioning a chunk of the data

stream and place each data tuple into its own singleton cluster. Then, it merges the

current pair of mutually closest clusters to form a new cluster. Finally, it repeats

step by step until there is one final cluster left, which comprises the entire chunk of

data stream.

The input of our clustering algorithm is a set of aggregated data tuples

in which each data point contains 4 features {spot id, lat, long, parking frequency}.

The aggregated data tuples are continuously pushing to the fog every hour. At the

fog, we configure a user-defined window weekly. At the end of each time window,

we trigger a data restructure function to sort the data so that each parking spot

has not only its geo-information but also its parking frequency information at each

hour during a week time window. Then, we apply the Principal Component Analysis

(PCA) to select the best attributes to feed the clustering algorithm. The clustering

algorithm is executed as shown in Algorithm 3.

There are many criteria to measure the distance between two clusters, u

and v, such as single linkage, complete linkage, average linkage, weighted linkage,

centroid linkage or median linkage. In our algorithm, we use Ward linkage since

it can efficiently handle noise. In this case, the distance between two clusters is

measured as the following equation.

d(u, v) =

√
(nu + ns)d(u, s) + (nv + ns)d(v, s)− nsd(u, v)

nu + ns + nv

(3.3)

where u, v are two joined cluster, and s is any other cluster; nu, nv and ns are the

size of cluster u, v, s, respectively.
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Algorithm 3: Data clustering implementation for aggregated data based
on Agglomerate Hierarchical Clustering approach

Data: Set of Q = (Q1, Q2, Q3, ...) such that Qi = (q1, q2, q3, q4)
corresponding with {spot id, lat, long, parking frequency} is the
aggregated data tuple; A distance function DIST(u,v)

Result: Set of clusters Y
1 Function Data Restructure(U):
2 P ← Selectdistinct(U)[id,lat,long] // Select a distinct list of parking

spot

3 foreach Hour do
4 X ← Select(U)[parking frequency] // Select a list of parking

frequency for every 1 h interval

5 G = P d|><| X using SpotID
〈
Id
〉

// Left outer join the parking

frequency column every 1 h to the list of parking spot

6 end

7 Function Clustering(Q):
8 C ← ∅ // Initialize the set of clusters

9 for i← 0 to n do
10 C ← C ∪Qi // Place each data tuple into its own singleton

cluster

11 end
12 while (|C| > 1) do // Loop until there is 1 cluster remain

13 forall u, v ∈ C do
14 dj ← DIST (u, v) // Compute the distance of all pair of

clusters

15 end
16 {ci, cj}=̂min(dj) // Select a pair of clusters {ci, cj}

corresponding to the best distance dj
17 C ← (C \ ci) \ cj // Eliminate them from the active set

18 C ← C ∪ (ci ∪ cj) // Group them to form a new cluster

19 end
20 return C;

21 Function Main(Q):
22 W ← Begin T ime
23 while True do
24 W ← W + ∆(t) // Set a time window to process the incoming

data

25 U ← ∅
26 repeat // Accumulate the incoming tuples until the end of

each time window

27 U ← U∪ incoming aggregated tuple Qi

28 until (current time == W);
29 V ← Data Restructure(U) // Restructure the data

30 Z ← PCA(V ) // Apply principal component analysis to

reduce the number of attributes

31 Y ← Clustering(Z)

32 end
33 return Y ;
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Recently, Gomes et al. (2017) proposed the algorithm Adaptive Random

Forest (ARF) to make predictions on data streams. In our smart parking application,

we have implemented our data prediction task for continuous incoming data tuples

in the cloud based on this ARF algorithm. According to the data life-cycle in Figure

3.5, the contextualized data streams created by the data contextualization task will

become the input data for the data prediction task. From the contextualized data

stream, we receive a sequence of contextualized tuples {T ′1, . . . , T ′n} pushing from the

fog in which each T ′i = 〈s1, . . . , s11〉|i corresponding with {spot id, length, startTime,

vehicle id, lat, long, spot name, event, endTime, edge arrivingTime, fog arrivingTime}.

For each tuple, we use the attribute event = {Occupied | Empty} as the correspond-

ing predictive target label when it is inputted to the ARF algorithm. It is worth

noting that the ARF algorithm works based on the assumption that the tuples of

input data stream are independent and identically distributed (iid). In our contex-

tualized data stream, each data tuple T ′i is individualistic and it does not influenced

to or is influenced by tuple T ′i+1. Also, the data contextualization task have deduce

the event when each tuple arrive at the fog node. Therefore, the ground truth target

label T ′i 〈event〉 corresponding with the other attributes in tuple T ′i is always available

before the next tuple T ′i+1 is presented to the learning algorithm.

Algorithm 4 illustrate the procedure to implement the ARF algorithm in

the cloud to predict the event from the incoming contextualized data stream. Dif-

ferent from batch random forest algorithm, where all data instances are available for

training; in stream learning, training is performed incrementally as new data tuple

T ′i is available. In the process of growing trees over the current incoming data tuple

T ′i , Algorithm 4 is able to detect whenever a concept drift happen in a tree and start

to replace by its respective background tree. Performance P of the ARF model is

computed according to some loss function that evaluates the difference between the

set of expected target labels T ′i 〈event〉 and the predicted ones T̂ ′i 〈event〉.
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Algorithm 4: Data prediction implementation using the Adaptive Random
Forest over the contextualized data stream in the cloud

Data: Set of T ′ = (T ′1, T
′
2, ..) such that T ′i = (s1, . . . , s10, event) is the

incoming contextualized data tuples;
Result: Prediction model P

1 Initialize: Set number of small tree N = int value; Randomly set number
of attributes F = Random number(2 : max no feature(T ′));

2 Function Tree Grow(Tree, T’, F):
3 k ← Poisson(λ)// Set λ value for bagging according to Poisson

distribution

4 if (k>0) then
5 L← FindLeaf(Tree, T ′)
6 UpdateLeafCounts(L, T ′) // update counts on attribute

values at L using T’ if (TuplesSeen(L) >= Leafmin) then
// Minimum number of tuples a leaf

7 Split on Best Attribute(L, F )
8 end

9 end

10 Function Random Forest(N, F, T ′i):
11 W ← InitWeights(N) // Initialize the weight for N trees

12 Tree← CreateTrees(N) // Create N trees

13 P ← ∅
14 while T ′i in pipeline do
15 forall Treek ⊆ Forest(N) do

16 T̂ ′i 〈event〉 ← predict(T ′i ) // Predict a parking spot

(Empty/Occupied) based on incoming tuple T ′i
17 W (Treek)← P (W (Treek), T̂ ′i 〈event〉, T ′i 〈event〉) // Assign new

weight to Treek
18 pk ← Tree Grow(Treek, T

′
i , F ) // Grow Treek on current

incoming tuple T ′i
19 P ← P ∪ pk
20 if (Detect(concept drift) == True) then // Concept drift

detected!!!

21 pj ← Tree Grow(Treej, T
′
i , F ) // Replace tree by its new

base tree Treej
22 P ← P ∪ pj
23 end

24 end

25 end
26 return P ;
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3.5.3 Streaming IoT Messages

As aforementioned in Section 3.4, the middleware brokers are integrated into our

architecture to assist us into stream the incoming data seamlessly in our system.

This section aims to illustrate the details of the data streaming mechanism between

the edge, the fog, and the cloud nodes in our edge-fog-cloud continuum via the

AMQP protocol. This protocol allows conforming client applications at different

nodes in the network of resource to communicate with each other via conforming

message brokers. A node in the network of resource can play the role of a producer

or a consumer. A producer is the application which can broadcast the messages to a

message exchange of a broker, while a consumer is the application which can retrieve

messages from the message queue. The data stream is not transmitted directly to a

message queue, instead, the producer streams data to an exchange. At a broker, an

exchange will route the data stream to the different queues.

Figure 3.7 delineates a sequence diagram of transmitting the IoT data

stream from the devices to the edge, then from the edge to the fog, and from the

fog to the cloud using this protocol. First, the IoT devices connect to the first mes-

sage broker and publish their generated data to the (/raw data) topic. Consumer

applications at the edge will connect to the same message broker and subscribe

the (/raw data) topic to ingest the data. At the edge, different analytical tasks

can be executed before a producer application communicate with the second mes-

sage broker and publish the processed data to the (/contextualized data) topic. The

same process happening at the fog as the consumer applications will connect to the

second message broker and receive the data from the (/contextualized data) topic.

Again, analytical tasks are executed to diagnose the event from the data in near real

time. Finally, a producer application establish a new connection with the third mes-

sage broker to transmit data to the cloud. In the cloud, the consumer applications
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will communicate with the third message broker and retrieve data from its message

queues for the predictive analytical task. Algorithm 5 depicts the sample pseudo

code for the producer and consumer to exchange the data via the brokers (Watch

the demo of streaming data from the edge to the fog, then to the cloud here: https:

//www.youtube.com/playlist?list=PL-hcE-LoSl0uMQy12yanDS8MEl5QLwp3d).

IoT Sensors/DevicesIoT Sensors/Devices Edge NodeEdge Node Message BrokerMessage Broker

Connect Ack

Fog NodeFog Node Cloud NodeCloud NodeMessage BrokerMessage Broker Message BrokerMessage Broker

Publish (topic:/raw_data) 
Connect Ack

Publish Ack

Subscribe (topic:/raw_data)

Subscribe Ack

Message (topic:/raw_data)
data_cleaning ()

data_fitering ()

data_contextualization ()

Connect Ack

descriptive_statistics ()

Publish 

(topic:/contextualized_data) 

Publish Ack Subscribe 

(topic:/contextualized_data)

Subscribe Ack

Message 

(topic:/contextualized_data)
data_contextualization ()

data_summarization ()

data_clustering ()

Connect Ack

Publish 

(topic:/contextualized_data) 

Publish Ack Subscribe 

(topic:/contextualized_data)

Subscribe Ack

Message 

(topic:/contextualized_data)
data_prediction ()

loop

every 5 seconds

loop

every 5 seconds

Connect Ack

Connect Ack

Connection Request

Connection Request

Connection Request

Connection Request

Connection Request

Connection Request

Disconnect Disconnect

Disconnect
Disconnect

Disconnect

Disconnect

Asynchronous 

Message

Synchronous 

Message

Return MessageSelf Message

Figure 3.7: Sequence diagram for pushing the IoT data stream to the edge, fog, and
cloud using Advanced Message Queuing Protocol (AMQP) protocol.

3.6 Discussion of the Results

This section describes the outcomes of the data life-cycle of our proposed “Analyt-

ics Everywhere” framework by showing examples of the results that emerged from

our streaming descriptive, diagnostic and predictive analytics for the smart parking

scenario. First, we discuss the performance of the our proposed architecture based

on the latency of the data stream and the memory consumption metric. Second, we
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Algorithm 5: Sample code to stream data from Producer to Consumer

1 Initialize: server = “hostname”
2 port = 5672
3 vhost = “virtualhost”
4 username = “username”
5 password = “password”
6 exchangeName = “Exchange”
7 queueName = “Queue”
8 Function Producer():
9 while True do

10 connection = create connection(server, port, vhost, username,
password)

11 channel = connection.create channel()
12 channel.send message(exchangeName, data)
13 connection.close()
14 delay(5 s)

15 end

16

17 Function Consumer():
18 while True do
19 connection = create connection(server, port, vhost, username,

password)
20 channel = connection.connect channel(exchangeName)
21 channel.consume(queueName, data)
22 connection.close()
23 delay(5 s)

24 end
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explore insights from the analytics at the edge, the fog, and the cloud.

3.6.1 Architecture Evaluation

In order to evaluate our proposed architecture, we have monitored the latency of

the data streams when they arrived at our compute nodes. To compute the latency

metric, we have collected samples every 10 min and registered the arrival times of the

data streams at the edge, the fog, and the cloud. Figure 3.8 illustrates the patterns

of the arrival time at different compute nodes.

Figure 3.8: Latency Patterns.

As we can see, the latency at the edge and the fog are not significantly

different. In contrast, there is a significant difference between them and the latency

in the cloud. In fact, the latency at the edge and fog fluctuated around 150 → 800

(ms), while the latency in the cloud ranged from 200→ 1300 (ms). Although we can

see similar latency patterns, a delay is clearly apparent when the data streams arrive

in the cloud. This can be explained because we have deployed the edge and the fog

nodes geographically close to each other using WSN in our smart parking scenario.

But the data is streamed to the cloud later using the core network. These latency

outcomes in Figure 3.8 have provided us with new insight on the crucial role of a

priori mapping between analytical tasks with the appropriate resource capabilities.
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Aiming to test the ability of our proposed IoT architecture to handle the

streaming traffic going through different hops in our architecture, we have computed

the memory consumption details of the brokers in Figure 3.9. Note that the memory

details shown here have been only updated on request because they could be too

expensive to calculate every few seconds on a busy compute node. As we can see,

the total amount of memory used was around 75 MB including allocated memory

for queues, binaries, connections, tables, processes and system. It was accounted

for approximate 76.5% of run time allocated for this broker during the last updated

request. This result indicates that there is still a lot of room in our system to perform

more heavier analytical tasks. It also shows the stability of our architecture during

the IoT data streaming operations.

Figure 3.9: Memory Consumption Overview.

3.6.2 What Is the Problem with Smart Parking in Saint

John?

In this section we describe the effectiveness of our architecture based on the proposed

data life-cycle consisting of monitoring the usage patterns (i.e., counts of how many

times the parking spot is occupied or occupancy frequency) at each parking spot
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every 10 min using the edge nodes to continuously process the IoT data streams.

Figure 3.10 presents the usage patterns of 25 most used parking spots during

a specific day of observation (13 May 2019). By comparing the total parking duration

and the average parking time with the frequency of an Occupied event for each

parking spot, we can infer that although the parking frequency is high, the average

parking time at each spot is relatively low, approximately 1 h to 1.7 h. Only 2

parking spots (id 9339 & 9342) are less than 1 h. Note that if a point in Figure 3.10

is close to the origin coordinate, it signifies that the parking spot is usually used

for short duration of time. However, the parking usage pattern was different the

following day (14 May 2019); the average parking time increased to about 1.5 to 3.6

h (See Appendix A Figure A.1). The data visualization analysis during a week of

observation can be found in this link (https://youtu.be/YwlOWXK9F3I).

Figure 3.10: Parking usage pattern of the 25 most used parking spots.

Figure 3.11 shows the statistical information about the total parking hours

of the top 50 vehicles using the parking service in the city during 2 weeks of obser-

vations (13 May 2019 to 26 May 2019).

124

https://youtu.be/YwlOWXK9F3I


Figure 3.11: Usage patterns of the top 50 vehicles.

These preliminary results are already point out the under-utilization of

parking spots in the city, since the frequency patterns can show often and how long

the parking sports are being used.
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3.6.3 Why Are These Usage Patterns an Issue in Saint John?

At the end of the data clustering task in Section 3.5.2.2, we are able to analyze to

diagnose the event/incident from the clustering algorithm results. In this smart park-

ing application, we have observed the continuous incoming aggregated data at the

fog for about 5 weeks (from 13 May 2019 to 16 June 2019). Whenever an aggregated

data tuple arrives at the fog, it will be accumulated and analyzed weekly. Figure

3.12 illustrates the dendrogram of the first observation week. The dendrogram is a

tree-form visualization of the clustering algorithm showing the order and distances

of merged clusters. One advancement of the HAC is that we do not need to choose

a number of clusters k in advance. Instead, we can determine the number of clusters

after the algorithm has been executed based on a cut-off distance of the dendrogram.

As can be seen clearly in Figure 3.12, four main groups of instances are congregated

into the clusters. Therefore, we have configured the cut-off distance equal to 19 (the

black horizontal line in Figure 3.12). The dendrograms of the remaining observation

weeks are depicted in Appendix B.1 (Figure B.1).

Figure 3.12: The dendrogram of the first observation week (13 May–19 May).

126



Figure 3.13 show the clustering results of the temporal attributes during

the first observation week. The clustering results of the remaining observation weeks

are depicted in Appendix B.2 (Figures B.2–B.5). The top right sub figure of Fig-

ure 3.13 of illustrates the 4 main temporal clusters found by the HAC algorithm

using a Ward distance and cut-off distance equal to 19, while the top left sub fig-

ure represents the geographical location of the parking spots for the corresponding

clusters. Similarly, the bottom sub figures show the resulting temporal clusters and

corresponding parking locations using the cut-off distance set equal to 16.

Figure 3.13: Clustering result of the first observation week (13 May–19 May).

We used aggregated data tuples arriving at the fog hourly as the algorithm

input attributes. Therefore, we have 7 days × 24 h × 1 tuple = 168 attributes for

each parking spot in the city during a week of accumulating aggregated data. Hence,

we would like to perform dimension reduction using PCA on these attributes to see

if any improvement on the clustering result with lower dimensionality. Figure 3.14

delineates the singular values of the principle components and the variance explained

with these components. From this figure, we can see that the first principle compo-
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nent can explain approximately 60% of the data variance, and the top 5 principles

together can explains nearly 80% of the data variance. Thus, we keep the first 5

components to re-implement the HAC algorithm again.

Figure 3.14: Principle Component Analysis over the aggregated data.

Figure 3.15 shows the dendrogram of the first observation week when we

apply the HAC algorithm on the first 5 principle components. Although there is a

slight difference in the leaf nodes compared to Figure 3.12, the group of clusters are

very similar.

Figure 3.15: The dendrogram of the first observation week for the top 5 principle
components.
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Figure 3.16 shows the clustering results of the first observation week when

we apply the HAC algorithm on the top 5 principle components. The clustering

results on the top 5 principle components of the rest observation weeks are depicted

in Appendix B.3 (Figure B.6–B.9) (See the evolution of the clusters here (1) https:

//youtu.be/XDUtc9XJWc8 (2) https://youtu.be/iS6-WxYHkv8).

Figure 3.16: Temporal patterns of occupied/empty events that were computed at
the fog node.

Observations & Comparisons: From the clustering results (see Figures 3.16

and B.6–B.9), we are able to diagnose some events/incidents based on the following

observations and comparisons:

• We can clearly discover 3 types of parking spots and where they are:

– the busiest parking spots (Cluster 2 in Figure 3.16, Cluster 3 in Figure

B.6, Clusters 4 and 5 in Figure B.7, Cluster 2 in Figure B.8, and Cluster

2 in Figure B.9) with the parking frequency from 2 to 4 times per hour,

which are all in the downtown core of Saint John City.
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– the ordinary parking spots (Clusters 3 and 4 in Figure 3.16, Cluster 2 in

Figure B.6, Clusters 2 and 3 in Figure B.7, Cluster 3 in Figure B.8, and

Cluster 3 in Figure B.9) with the parking frequency from 1 to 2 times

per hour, which are mainly in the downtown core of Saint John City and

surrounding areas.

– the unpopular parking spots (Cluster 1 in Figure 3.16, Cluster 1 in Figure

B.6, Cluster 1 in Figure B.7, Cluster 1 in Figure B.8, and Cluster 1 in

Figure B.9) with the parking frequency from 0 to 1 time per hour and are

often located in the areas far from the the downtown core of Saint John

City.

• Based on these diagnostic analytical results, we can observe that there are

almost no parking event during the weekend. However, this may, in fact, be

inaccurate because the smart parking facilities are free for usage during the

weekend.

• Based on the clustering results, we identified that a special event/festival had

taken place during second observation week. Figure B.6 shows that there are

not many parking behaviors on Monday, 20 May 2019. We noted that this

date was a Canadian holiday, Victoria Day. However, interesting insights can

be discovered from a cluster since a small number of people still paid for the

parking facilities even though it was free on this day.

• Comparing the clustering results of the third observation week (Figure B.7)

with the other observation weeks, we discovered that an abnormal event that

occurred on Wednesday, 29 May 2019 since the parking frequency reached a

peek in Cluster 5. More context (e.g., a city events/festival schedule) is needed

in order to explain this phenomenon.
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In summary, the clustering results alone were inconclusive to identify the

reasons for the under utilization of parking spots in the city. Other factors may have

played a role in generating the observed clustering patterns such as parking costs

and/or availability.

3.6.4 What Could Be Improved in the Future?

The incremental predictive learning model implemented in Section 3.5.2.2 aims to

anticipate whether the status of a parking spot is Empty or Occupied in the future

by training the incoming contextualized data tuples. We evaluate our model mainly

based on the accuracy metric and the kappa metric. Although the accuracy metric

is useful on a binary classification, it does not provide a complete picture of the

performance of our predictive model. Our training contextualized data tuples con-

tain imbalanced number of Occupied and Empty class, therefore, the kappa metric

(Bifet et al., 2015) is utilized alongside with the accuracy metric to avoid misleading

predictive performance results. This is defined as the following equation:

κ =
pO − pE
1− pE

(3.4)

where pO is the predictive model’s prequential accuracy and pE is the probability of

an expected random chance accuracy.

Figure 3.17 delineates the accuracy and kappa performance of our predictive

model during the 5 weeks of incremental training (from 13 May 2019 to 16 June

2019) (See the full process of incremental training model (1) https://youtu.be/

AJvxM69AFps (2) https://youtu.be/RQEaoF4WkXo. As can be seen from this figure,

more accurate prediction results can be achieved by increasing the number of data

tuples used produce the predictive model. Moreover, the kappa score was increased
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to 0.8, indicating that our predictive model was improved, compared to a random

chance model.

Figure 3.17: Incremental predictive learning results.

Figure 3.18 shows the F1, Precision, and Recall score of our adaptive pre-

dicting model. It shows the high score of these three measurements and an increasing

trend, similar to the one shown in Figure 3.17.
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Figure 3.18: F1, Precision and Recall score of our predictive model.

In general, we have built a fairly good prediction model that is able to

anticipate the incoming IoT data stream. The more data to arrive in our system,

the better prediction accuracy we can achieve.

3.7 Conclusions

This paper describes our preliminary results in evaluating an IoT architecture where

edge, fog, and cloud resources are used to support streaming analytics for a smart

parking application. The latency and memory consumption metrics have pointed out

that more research is needed to develop new metrics to evaluate IoT architectures

in the future. These metrics are fundamental to design the best IoT architecture in

order to account for the specific requirements of the IoT applications.

Moreover, the “Analytics Everywhere” framework will also play an impor-

tant role in generating better results for the IoT applications. The selection of an-
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alytical tasks (e.g., clustering versus classification) and performance metrics (e.g.,

latency) still need to be further investigated to provide more empirical results that

can be used to improve our architecture.

We do not expect that one IoT architecture will fit all IoT applications.

The smart parking scenario has proven that streaming analytics will always require

a-priori mapping between analytical tasks and computational resources using a data

life-cycle. Our future research work will also focus on developing a transfer learning

process for our “Analytics Everywhere” framework.

Our main lesson learned after developing our IoT architecture is that if any

of the edge-fog-cloud resource is considered in isolation, it would not be able to man-

age the data life-cycles of IoT applications without compromising the functionality

or performance. However, many threats to validity of the proposed architecture us-

ing the edge-fog-computing might arise in other IoT applications. We will work with

other IoT applications in smart cities, specifically those that require the analysis of

time-series data and not only events.
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Chapter 4

The design of an IoT-GIS platform

for performing automated

analytical tasks
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Abstract

Society has a very ambitious vision of building smart interconnected cities through

the Internet of Things (IoT). Billions of data streams will be generated by devices

using different networking infrastructures of smart cities, enabling the automation
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of how the data that are being collected can be analysed for. However, significant

scientific and technological challenges need to be overcome before IoT-GIS platforms

can be widely used. This paper is a first step towards designing an IoT-GIS platform

for performing automated analytical tasks that are able to retrieve, integrate and

contextualize data streams with the purpose of adding value to the provision of

transit services. Three automated tasks are used to describe our platform: (1)

data ingestion for retrieving data streams; (2) data cleaning for handling missing

and redundant data streams; and (3) data contextualization for representing the

mobility context of transit driving behaviour. The Codiac Transit System of the

Greater Moncton area, NB, Canada was used for building a mobility context and

evaluating the cloud architecture that was used to implement our IoT-GIS platform.

From the experimental results, the need for cloud computing for achieving scalability

and high performance of our IoT-GIS platform is validated. Suggestions for the

operational management of routes to improve service quality are proposed based on

the analytical outcomes.

4.1 Introduction

With the advent of the Internet of Things, the spread of geographically distributed

devices equipped with sensing capabilities will generate real-time data streams that

will be transported through communication networks such as WiFi, Bluetooth, Zig-

bee, LoRaWan, and 5G. The IoT devices are usually equipped with many kinds

of sensors, ranging from accelerometers and gyroscopes to proximity, light, micro-

phones, and cameras. They generate data streams that are usually an unbounded

sequence of tuples that are most likely to be out-of-order and having a high data

rate. A vast number of devices are being embedded into the very fabric of smart
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cities in such a way that they will revolutionize operational functioning and plan-

ning, through management, control and optimization of traditional services such as

intelligent fleet management (Sun et al., 2016), smart parking (Mainetti et al., 2015)

and digital health (Banos et al., 2016). This is already causing a shift from tradi-

tional GIS platforms towards IoT-GIS platforms in which IoT devices are linked by

means of communication technologies that are crucial to enable smart cities func-

tioning in real-time from routinely sensed data (Batty et al., 2012; Song et al., 2017).

The fundamental assumptions underpinning GIS platforms are being challenged due

to the proliferation of sensors, intelligent high bandwidth networks and cloud com-

puting. In particular, traditional GIS platforms are inefficient mainly because they

usually require heavily coordination of several tasks using limited computing re-

sources. Moreover, the coordination of these tasks has been time-consuming and

error-prone, since the tasks were not fully integrated, requiring human intervention

for executing them to achieve new insights.

Automated analytical tasks must handle the continuous production of tu-

ples flowing from the devices through a variety of tasks running on IoT-GIS plat-

forms. These tasks will be performed at regular times (e.g. every hour) or be

triggered every time the tuples arrive at a platform. Previous attempts have been

focused on developing automated analytical tasks for network monitoring (Gupta

et al., 2016), fraud detection (Rajeshwari and Babu, 2016), data warehouse augmen-

tation (Meehan et al., 2017), risk management (Puthal et al., 2016) and distributed

processing of sensor-web data (Duckham, 2012). No research efforts on developing

IoT-GIS platforms have been found in the literature so far.

From a conceptual perspective, an IoT-GIS platform will play an important

role in exploring data streams in time and space. Time is an important dimension

of this platform, and different approaches have been proposed in the literature to
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handle unbounded data streams, including landmark windows (Leung et al., 2013),

sliding windows (Lee et al., 2014), and tilted windows (Giannella et al., 2003). In

contrast, the space dimension has been neglected so far, even though data streams

are being generated over large geographical areas with fine spatial granularity. The

scientific challenge is to integrate the notion of a mobility context into a IoT-GIS

platform as being more than location, date and time (Bettini et al., 2010; Ranasinghe

and Walpola, 2016).

From an implementation perspective, an IoT-GIS platform will require (1)

a pre-build connector that supports data connectivity to communicate with several

devices, (2) a low-latency database for storing data streams, and (3) high perfor-

mance processing for supporting the automated tasks. The technological challenge

is to design an IoT-GIS platform that can perform analytical tasks without human

intervention (e.g. an event from an IoT device triggers an analytical task), and at

the same time, cope with the transportation of unbounded data streams where the

data rate may overwhelm the processing power of this platform.

One way to address both scientific and technological challenges is to con-

sider designing an IoT-GIS platform based on cloud computing for coupling data

streams with automated tasks with the purpose of assessing existing transit ser-

vices. Towards this end, this paper proposes the design of an IoT-GIS platform that

supports three automated analytical tasks taking into account the mobility context

given by a transit agency of a small urban area. They are: data ingestion, data

cleaning and data contextualization. Each task consists of several automated steps

that are designed bearing in mind a mobility context . Although the idea exists

that context plays an important role in IoT, it continues to lack careful examination.

Many mobility contexts may exist according to the relevance of taking into account

the contextual history derived from the actual mobility of transit vehicles and their
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interaction with urban forms (i.e. streets and intersections).

Our research assumption is that mobility contexts help to explain the phe-

nomena, reinforces different perspectives, provides truly understanding of the back-

ground of the problems and may have many dimensions such as spatial, physical,

social, and temporal. And as a result, they are an important requirement, together

with scalability and automation to take into account when designing an IoT-GIS

platform. The proposed IoT-GIS platform is demonstrated with AVL stream data

(Automatic Vehicle Location) collected by the Codiac Transit Agency of the Greater

Moncton Area, which serves a small urbanized area in New Brunswick, Canada.

Small transit agencies usually lack resources and have small fleet sizes and simpler

route structuring, making the IoT-GIS platform relevant to improve their ability to

collect data, to coordinate the analytical tasks and access the results, as well as to

monitor operational strategies.

The remainder of this paper is organized as follows. In Section 4.2, related

works in GIS platforms previously developed for smart transit applications are re-

viewed and the existing IoT platforms are described. In Section 4.3, the IoT-GIS

platform is presented, including the details of the automated tasks, specifications,

and requirements. Section 4.4 is dedicated to describing the cloud architecture used

to implement the IoT-GIS platform. Section 4.5 describes in detail the experiment

of implementing our IoT-GIS platform for the Codiac Transit Agency. Section 4.6

discusses both the performance of the proposed platform and the experiment analysis

results. Section 4.7 concludes the paper and discusses further research.
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4.2 Related Work

Small transit agencies tend to have limited resources for facing the challenges of

continually increasing the high quality of the delivered transit services and reducing

private car dependency while ensuring low operational costs, low environmental im-

pact, and safety. To this end, transit operators and managers need to understand

the functioning of their services to develop strategies for their availability, reliability,

and performance. Although a significant effort toward automating the collection

of data has been achieved by transit agencies, including Automatic Fare Collection

(AFC), Automatic Vehicle Location (AVL), and Generated Transit Feed Specifica-

tion (GTFS), the actual stream data generated at the vehicular level continues to be

difficult to be retrieved due to its large data volume and the absence of automated

tasks. Traditionally, the platforms have been designed for sending the stream data

to a server, where the data can be later stored in a GIS where further pre-processing

is manually performed and ad-hoc queries are executed by the users of this platform.

Some examples include the SQL database platform integrated with a web interface

proposed by Pi et al. (2018) that allows users to perform interactive queries to exam-

ine the impact of bus bunching in a transit network performance using metrics about

the bus routes, bus stops and trips obtained from four years of Automated Passenger

Counter (APC) and AVL data. Luo et al. (2018) proposed a PostgreSQL-Matlab

platform for carrying a sequence of pre-processing steps needed to integrate AFC,

AVL, and GTFS datasets and later generating space-time seat occupancy graphs

which have provided transit operators with information about crowding patterns

that can be used to improve timetable optimization and fleet scheduling. The pre-

processing steps are manually performed, and the time processing of each step can

vary significantly depending of the availability of stream data.

Small transit agencies also lack the resources for performing analytical tasks
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that are vital for developing a long-range strategic plan or avoiding planning in a

reactive manner. Previous research work has demonstrated the important role of an-

alytical tasks in providing new insights for large transit agencies. Zhong et al. (2014)

have applied a two-step analytical framework based on a probabilistic Bayesian model

combined with IDW function in ArcGIS to build functions from equivalent daily so-

cial activities using data from surveys carried out every four years and the smart

card system generated by the Singapore Land Transport Authority. Isukapati et al.

(2017) demonstrates how descriptive analytics tasks can provide new insights on the

dwell times at bus stops of two sample bus routes provided by Port Authority of Al-

lengheny County, Pennsylvania. The results can be used for improving urban traffic

signal control when the uncertainty in dwell times at bus stops might result in delays

for the traffic flow. However most of these tasks tasks have not been developed to be

executed in any platform yet, and as Lv et al. (2017) point out that not only data

collection tasks but also analytical tasks will become more automated in the near

future.

There is a growing interest and demand to develop IoT platforms that can

support automated analytical tasks, ranging from data collection and pre-processing

tasks to analytics and visualization tasks. Our research work is one step in this direc-

tion. A systematic overview of IoT can be found in several surveys that have been

recently published. Some examples include the survey of Al-Fuqaha et al. (2015)

that provides an overview of IoT enabling technologies, protocols, and applications

where authors summarize key elements to realize the IoT, and point out the need

for new IoT platforms that can offer automated management, data aggregation, and

protocol adaptation among different IoT devices. In contrast, Li et al. (2015) have

mainly focused on examining the Service-oriented Architectures(SoA) in IoT, show-

ing that the main research challenges in designing the architecture of IoT platforms

are the nature of heterogeneous, real-time movement of the IoT devices. Several
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IoT platforms have also been proposed based on Service-Based IoT Middleware,

Cloud-Based IoT Middleware, and Actor-Based IoT Middleware which are support-

ing computing services in a cloud environment (Ngu et al., 2017). Gazis (2017) has

recently pointed out the lack of standardization of IoT platforms in terms of services,

data, and communications.

Over 400 IoT platforms have already been proposed to address sensor

technologies and communication networking challenges for supporting supply-chain,

manufacturing, and smart homes applications. Although these research efforts are

in progress to design IoT-based systems (Carrez et al., 2017; Datta et al., 2014; Krco

et al., 2014; Lloret et al., 2016; Nelson et al., 2017; Sarkar et al., 2014, 2015), most

of the research work has been focused on platforms using fixed IoT devices that are

tagged to a specific location, while not many efforts have attempted to solve the

problems in the context of moving IoT devices (Chun and Park, 2015; Gerla et al.,

2014; Shibata and Sato, 2017; Wu et al., 2015). Our research work envisages that

a transit vehicle will become a moving IoT device in the future, and IoT-GIS plat-

forms will play an important role in providing new insights in understanding transit

network performances as well as automated tasks for fostering innovative transit

applications.

One example includes the Smart Object platform that demonstrates the

feasibility of supporting real-time monitoring of commodities in a supply chain by

attaching RFID tags to objects such as consumer goods, product parts, pallets,

containers, and vehicles. The RFID readings provide automatic object location and

environmental sensors are also used to add additional information relevant to the

context of a particular monitored item (López et al., 2012). A similar approach was

used to design the Virtual Object (VO) platform for traffic monitoring in digital cities

using inductive loop detectors for detecting vehicle passing or arriving at a certain
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point (Somov et al., 2013). Both approaches provide a virtual representation of real-

world objects with a corresponding virtual object in the platform. The concept of

VO allows us to deal with the problems of sensor heterogeneity and system scalability

as well as enrich IoT data streams with metadata (i.e. context information).

Kantarci and Mouftah (2014) presents a pioneering research work on the

conceptual design of the MATCS (Mobility-Aware Trustworthy Crowdsourcing) plat-

form by incorporating user auction procedures based on current location of the users

and their estimated dislocation during the crowdsourcing process. Although this

platform has not been implemented yet, the simulated results validate the impor-

tance a mobility context has in collecting and verifying IoT data streams.

In contrast, very few cloud platforms can be found in the literature for

supporting analytical tasks. Sun et al. (2016) proposes the MOMA (Moving Object

Map Analytics) platform for manually performing a list of high performance tasks

including GPS noise filtering, map matching, geo-fencing, contextual map fusion

and trajectory pattern learning. Using a service-oriented architecture, the GPS

trajectories were manually enriched by adding attributes such as weather, road type,

and traffic condition that were used to build mobility contexts such as a single trip,

personal profiling, and population profiling. Their preliminary results have pointed

out that performance and scalability are the key technical challenges for improving

their platform, especially for building mobility contexts that can handle a large

number of data streams and automated tasks that can support high performance.

The UBICON platform proposed by Atzmueller et al. (2016) is the first

attempt to take into account a social context within an analytical process. Although

the tasks were not automated, the platform is developed for performing data capture,

localization and activity recognition component in which different technologies and

open-source tools are used such as the Sensor Data Collection Framework (SDCF),
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the WEKA toolkit, the VIKAMINE platform, and the GNU R environment for

statistical computing. The social contexts were used for illustrating the capabili-

ties of different tasks ranging from face-to-face social interactions to participatory

open-sensing. Several applications were sketched by using this platform to perform

analytical tasks. For example, indoor localization is identified through context infer-

ence using Bluetooth low-energy (BLE) technology or contexts are predicted based

on interpretable class association rules.

In summary, it is important to point out that the first phase in the evolution

of IoT has been focused on the proliferation of devices, protocols, and architectures

where the main research challenges have been related to connectivity, physical in-

frastructure, sensors, and hardware configurations. A second phase is taking place

where the core research challenges are shifting to software design, automated an-

alytics, and platform configuration. Our research effort in designing an IoT-GIS

platform is somewhere between the first and second phase, and therefore, it might

be vulnerable to major disruptions yet to come due to the advances in networking

and database technologies as has been previous revealed by Verma et al. (2017).

4.3 The Automated Analytical Tasks

We propose an IoT-GIS platform focusing on using data streams which are defined

as a sequence of tuples that usually contains attributes such as:

{[T1 = (S1, x1, y1, t1)], [T2 = (S2, x2, y2, t2)], ..., [Tn = (Sn, xn, yn, tn)]}

where

Sn: is a set of attributes (i.e. measurements) obtained from an IoT device;
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xn, yn, tn: is the geographical location of an IoT device at the timestamp t when

a measurement has occurred.

The main characteristics of tuples have been previously outlined by Gama

and Rodrigues (2007). They can be described as one of the following:

• Each tuple in a stream arrives online. When the tuples are transported in

batches, they are gathered in discrete packages at periodic intervals of time. An

effective platform begins by prioritizing routing data packages to an automated

task.

• A platform has no control over the order in which a tuple arrives within a data

package or across data packages. When a task is automated, the platform used

to carry out the task requires continuous queries. Two types of continuous

queries are possible. First, pre-defined queries can be scheduled and they are

one-time queries that can be provided by a task before any relevant tuple has

arrived at the platform. Second, ad-hoc queries can be issued online and they

are not known in advance by a task. They bring complexity to automating the

tasks, and therefore, they were not used in this paper.

• Tuples are potentially unbounded in size. Ideally, an IoT-GIS platform should

support flexible data rates to make sure any relevant tuple has arrived at the

platform. Unfortunately, current network technologies do not support such a

capability.

Three automated tasks have been designed including (1) data ingestion;

(2) data cleaning ; and (3) data contextualization. The automation of these tasks is

of paramount importance to streamline large amount of tuples. The data ingestion

task consists of retrieving the data streams from different IoT devices and connecting
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to a GIS in the cloud platform. The data cleaning task involves running continuous

queries to execute common geo-processing tasks. Finally, the contextualization task

is the most complex task because it contextualizes the tuples from the previous tasks

by attaching new attributes to each original tuple according to a specific mobility

context. The a-priori knowledge about the nature and scope of the movement of the

IoT devices (i.e. the mobility context) is of paramount importance to design any

automated task because it takes into account the geographical distribution of IoT

devices, their mobility, and the low latency of a communication network. Figure 4.1

illustrates the overview of the automated analytical tasks.

Figure 4.1: Automated tasks our IoT-GIS platform.

In our research work, determining a mobility context requires us to make

several assumptions which are common in the literature of mobility analytics (Doulk-

eridis and Vlachou, 2017; Velt et al., 2017). The first assumption is that the mobility

context will be developed using the concepts of a “trip” at the individual scale and

a “network of trips” at the aggregated scale. At the individual scale, a trip taken
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by a moving IoT device will dictate how the data streams are acquired, the sensors

being used, and the mobility context of the data being harvested. There are many

definitions of a trip, but in our mobility context we define a trip as a sequence of

tuples which represents the origin, moves, stops, and destination of a moving IoT

device. We do not claim that this definition captures the human mobility context

of any IoT devices in the near future, but it can allow us to design the automated

tasks with some reasonable certainty with the available IoT technology today. At

the aggregated scale, a network of trips is needed to represent any trip of a moving

IoT device. When the IoT data are aggregated into groups of trips based on a mobil-

ity context, it considerable reduces the processing time of our automated tasks. To

achieve that, our second assumption is that a cloud computing platform is the most

appropriate for implementing our automated tasks because it provides the flexibility

of connecting it to a variety of IoT devices. Finally, the scalability characteristic of

cloud computing allows us to design our automated tasks to be operated without

processing power constraints.

4.3.1 Data Ingestion

The data ingestion task is known as the undertaking of pushing tuples from different

devices into our IoT-GIS platform. The ingestion task allows an http POST, Wi-Fi

and a 3G connection for rapid retrieval of tuples from the devices themselves as

well as a broadcasting service in which a forever loop of event time windows can be

applied. Selecting the time granularity of an event time window will depend on the

selected mobility context. It should not be determined using the data rate of the

IoT devices, since data rates are not useful to build a mobility context.

There are two advantages of using event time windows. First, they separate

the semantics of program from the real streaming speed of the communication net-
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work (e.g. Wi-Fi or 3G). Hence, historical tuples can be processed, while streaming

tuples are continuously produced within the same task. Moreover, the event time

windows also restrict semantically inaccurate results in the scenario of delays due to

network congestion or failure recovery. Second, they deliver more accurate outcomes,

even if the tuples arrive out of their timestamp order.

All the tuples that arrive in the IoT-GIS platform are stored in a Post-

greSQL database according to the a-priory specified event time windows. Although

NoSQL databases such as MongoDB, Cassandra, and HBase are well suited for

storing and indexing the tuples, they might lack the functionality of storing and

manipulating geographical information that is needed to build a mobility context.

Moreover, the lack of a database schema of NoSQL databases may cause a continuous

query to fail due to unpredicted application behaviour. The PostgreSQL database

provides a central database schema in our cloud platform, and a pre-defined query

to retrieve the tuples needed for the automated tasks. Moreover, the PostgreSQL

community have added many new features and better performance for big data use

cases including the ability to store unstructured data and add a column on the fly

in a dynamic table (Chihoub and Collet, 2016).

In summary, a data package containing a set of unbounded tuples keeps

being pushed to the IoT-GIS platform and stored in a PostgreSQL database which

can be queried to retrieve the tuples using different event time windows, ranging

from hour, day, week, month, and year. In this paper, we have executed a query to

retrieve a year of tuples to illustrate the outcomes of our proposed IoT-GIS platform.
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4.3.2 Data Cleaning

The data cleaning task is always necessary in order to eliminate inconsistencies and

errors from the stored tuples. Guaranteeing data quality for continuous and high

volume of tuples is a non-trivial task, and performing this task automatically is even

more challenging because IoT devices usually produce a vast amount of noisy data.

The task is automatically initiated using a continuous query that aims to retrieve

all the raw tuples in the PostgreSQL database. Five automated data cleaning steps

are designed including (1) removing missing tuples, (2) removing duplicated tuples,

(3) handling missing attribute values, (4) removing redundant attributes, and (5)

removing wrong attribute values. These steps are executed in conjunction with the

pre-defined query running in the cloud platform and they can be described as one of

the following:

• Step 1 - Removing missing tuples: Every data package is expected to arrive

accordingly to the selected event time window (e.g. every 5 seconds, every

hour). However, due to connectivity and/or sensor problems, missing tuples

usually occur for a trip, and they are ignored.

• Step 2 - Removing duplicated tuples: It includes the case when the same tuple is

transmitted twice. In this situation, any duplicated tuple is identified through

its timestamp trace and then removed.

• Step 3 - Handling missing attributes values: S is a set of a finite number of

attributes which is transmitted for each tuple. If the missing attribute value of

a tuple is not used in the further steps, the “N/A” is assigned to this attribute.

Otherwise, we delete the entire tuple.

• Step 4 - Removing redundant attributes: Although S has a fixed number of

attributes, there are cases when a new attribute is added to a tuple during
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the transport to the cloud platform. For example, in the case of having a set

of 4 attributes, it might occur that 5 attributes are retrieved instead. In this

scenario, the additional attribute is automatically removed.

• Step 5 - Removing wrong attribute values: A wrong value for an attribute might

occur due to uniqueness violation and misspelling. In this scenario, the data

cleaning task tries to standardize and normalize the wrong value. But if the

value cannot be standardized, the attribute is treated as a missing attribute

value case.

Once the data cleaning task is finished, a target data set is automatically

created. This is a cleaned data sample ready to be used by the data contextualization

task.

4.3.3 Data Contextualization

This is the most complex task designed to be automated in our analytical process.

Contextualization enriches the tuples step by step from the prior data cleaning task

by adding new attributes to each tuple according to a specific mobility context. But

before this task even starts, the tuples need to be sorted in the most effective manner

for executing the data contextualization steps. Towards this end, the contextualiza-

tion steps are executed using the Hadoop MapReduce framework. The Map() phase

of MapReduce framework is utilized to bundle the tuples coming from the previous

task into various groups that are later processed in a parallel style by the Reduce()

phase aiming to execute the data contextualization steps using a Python script. The

key feature of MapReduce is its ability to perform the processing steps of a contextu-

alization task across an entire cluster of nodes, with each node processing a partition

of the stream tuples.
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For this paper, we selected the concept of a trip to illustrate our mobility

context. To this end, the data contextualization task consists of seven automated

steps which can be described as follows:

• Step 1 - Stop/Move Detection: The aim is to determine whether an IoT device

is moving, has stopped off, or has suspended its movement during a trip. In

this contextualization, the timestamp t and the geographical coordinates (x,

y) of each tuple are utilized. First, a fixed mobility radius for each IoT device

is determined according to the mobility context of interest. Usually parame-

ters used to determine the threshold value are speed or a fixed time distance.

Second, the Euclidean distance of a trajectory of an IoT device is identified

based on two consecutive tuples (i.e. points). If this distance is larger than the

mobility radius, a new attribute which contains the value “move” is attached

to the second tuple. In contrast, if this distance is less than the threshold, the

“stop” attribute value is attached to the second tuple.

• Step 2 - Stop/Move Classification: The aim is to classify the moves and stops of

each trip obtained from the previous step in order to improve our understanding

about their mobility context. Any stop may occur because of an accident,

traffic congestion, picking up passengers at a bus station, or a traffic light of

one street intersection. A new attribute is attached to the original tuple.

• Step 3 - Street Name Annotation: The aim is to annotate the moves and stops

according to the street nomenclature of a city network. A new attributed is

attached to the original tuple.

• Step 4 - Geographical Feature Annotation: The aim of this step is to annotate

the stops and moves according to a place of interest. Some examples include

a bus stop, a shopping mall, or a hospital. A new attribute is attached to the

original tuple.

154



• Step 5 - Street Intersection Annotation: The aim is to annotate the moves and

stops that occur at the intersections of a street network. A new attribute is

attached to the original tuple.

• Step 6 - Temporal Annotation: The goal of this step is to identify the actual

arrival time and departure at a specific place of interest. A new attribute is

attached to the original tuple.

• Step 7 - Trip Annotation: The aim is to tag each first tuple of a trip as

origin and each last tuple of a trip as destination. The other tuples are then

sequentially indexed.

At the end of the contextualization task, a new data set is generated and

stored in the PostgreSQL database. This data set contains seven new attributes

added to the original set of tuples obtained from the data cleaning task. These

attributes represent the mobility context that characterises the interaction of IoT

devices with their surrounding environment during their trips.

4.4 Cloud Architecture

Our IoT-GIS platform requires stream processing for supporting the continuous com-

putation of data flowing through the automated tasks. This allows any tuple that is

retrieved to be processed as soon as it arrives. The only constraint is that the output

rate should be at least similar to the data input rate, mainly to have enough memory

to store the data after each task is performed. Figure 4.2 provides an overview of the

cloud architecture developed for our IoT-GIS platform. Cloud computing can facil-

itate massive-scale and complex data processing by taking advantage of virtualized

resources, parallel processing, and data service integration with scalable data storage
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that can support the IoT data streams. Indeed, most of the analytical processes in

IoT have been deployed in the cloud due to its flexibility and efficient resource pro-

visioning (Botta et al., 2016; Cavalcante et al., 2016; Dı́az et al., 2016; Fortino et al.,

2014; Truong and Dustdar, 2015; Wang and Ranjan, 2015). Two virtual machines

(VM) are leveraged to form the cloud architecture. The VM 1 is used to perform

the data ingestion and data cleaning tasks as well as storing the GTFS and GIS

data sets which are needed for the contextualization task. Moreover, both VM1 and

VM2 are combined to implement a high performance Hadoop cluster for executing

the contextualization analytical task.

Figure 4.2: Overview of the cloud architecture developed for our IoT-GIS platform.
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4.4.1 PostgreSQL Specifications and Requirements

The database in the cloud has been designed to manage and store not only the raw

tuples being generated by the IoT devices but also to integrate geospatial data pro-

vided as input to the automated tasks. The data sets used were the open spatial

GIS transit network and the spatial data from the GTFS package. Therefore, one of

the main requirements for our database is that it should be a fully ACID (Atomicity,

Consistency, Isolation, Durability) compliant database with flexibility and high scal-

ability in terms of geographical distribution. The PostgreSQL 9.5.3 database was

deployed on a virtual machine (CentOS 7.0 x64, Intel(R) Xeon(R) CPU E5-2650

v2 @ 2.60GHz, 8 CPU cores, 29.3 GB RAM, 859 GB Disk). PostgreSQL was se-

lected not only because it supports storage of binary large objects but also because

it provides a native programming interface for Python that is our language of choice

for implementing the algorithms of the automated tasks. We have also used Post-

GIS which is an extension to the PostgreSQL, to support geo-processing needed for

several steps of the contextualization task.

4.4.2 Hadoop Specifications and Requirements

Hadoop was primarily used for supporting the contextualization task. It is a Java-

based open-source software framework that supports distributed storage and process-

ing of massive datasets across the clusters of commodity servers using the MapReduce

framework (Dean and Ghemawat, 2010). Hadoop was selected because it is designed

to run applications on systems that have the scalability from a single virtual machine

to many thousands of ones, with a high level of fault tolerance. The distributed file

system (HDFS) facilitates rapid data transfer rates among machines and allows the

system to keep working uninterrupted in case of a server failure. It divides HDFS
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data into large blocks that can be handled on many servers in the cluster. To handle

the data, the Hadoop framework transfers packaged code for machines to process in

a parallel manner, based on the data blocks each machine needs to process.

In our platform, a Hadoop cluster includes one master machine and one

slave machine that were deployed on the Compute Canada West Cloud resource

following the specifications listed in Table 4.1.

Hadoop cluster

Master

Hostname: first-hung.westcloud
OS: CentOS 7.0 (x86 64)
CPU: Intel(R) Xeon(R) CPU E5-2650 v2 @ 2.60GHz
Number of CPU core: 8
RAM: 29.3 GB
Disk: 859 GB
IPv4 Address: 192.168.14.60

Slave

Hostname: third-hung.westcloud
OS: CentOS 7.0 (x86 64)
CPU: Intel(R) Xeon(R) CPU E5-2650 v2 @ 2.60GHz
Number of CPU core: 8
RAM: 29.3 GB
Disk: 859 GB
IPv4 Address: 192.168.14.67

Table 4.1: Overview of the Hadoop Specifications.

The main requirement for the cloud platform is to support the MapReduce

framework for the sorting of the tuples of the IoT devices as illustrated in Figure

4.3.

The MapReduce framework basically performs two functions. First, the

Map function divides the HDFS data set obtained from the cleaning data task into

key-value pairs then shuffles them into many small subsets with the same key. The

key-value pairs consist of any set of attributes that can uniquely identify a trip of an

IoT device. Second, the map function maps this input data to a set of transitional

key-value pairs. After executing the map function, the result is key-value pairs in
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Figure 4.3: Logical view of the contextualization steps using MapReduce.

which the value is the list of many sorted tuples T that have the same key as follows:

Map(T1, ..., Tn)→ [K; list(sorted subset(T ))]

The Reduce function takes these subsets and applies the contextualization steps in a

parallel manner to produce a single result set. The Reduce function reduces a set of

intermediate values which share a key K to a smaller set of values list(F ) as follows:

Reduce([K; list(sorted subset(T ))])→ list(F )

The input of the Reduce function is used to partition the tuples into groups having

the same key-value pairs. At the end of the Reduce phase, all output of the Reduce

function is grouped into a list of processed tuples of the form

F1(S1, a1, a2, a3, a4, a5, a6, a7);

F2(S2, a1, a2, a3, a4, a5, a6, a7);
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...

Fn(Sn, a1, a2, a3, a4, a5, a6, a7);

where a1, a2, a3, a4, a5, a6, a7 are the new attributes.

4.5 Experiment: Smart Transit for Small Urban

Areas

Small communities are usually confronted with unique challenges when providing

transit services. Transit agencies typically serve populations that live in small ur-

ban areas with no congestion and plenty of parking facilities, and they are usually

accustomed to short travel times. For our mobility context, we have selected the

Codiac Transit that serves three communities: Moncton, Dieppe, and Riverview

with a population of 130,000. Households pay $11 per month on average towards

the operation of transit services. The latest available statistics show that 2,307,725

passengers used Codiac transit services in 2016 (Codiac, 2018).

Codiac Transit operates 30 bus routes from Monday to Saturday; some of

them provide evening and Sunday services. Despite the fact that all buses of the

fleet are equipped with GPS, allowing transit managers to know the exact location

of any bus every 5 seconds, every time Codiac Transit considers adjusting a route or

launching a new route, they physically go out with a bus to pace. This operational

undertaking is not ideal since Codiac Transit like most small transit agencies has

limited human resources that can be devoted to perform such a task. Therefore,

this mobility context was selected to illustrate that it is possible to accurately and

automatically compute the pace of a route using our IoT-GIS platform. Figure 4.4
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shows how data streams generated on the buses can be sent to our cloud infras-

tructure where the automated tasks are executed for building the mobility context.

At the individual scale, every trip is automatically created by adding information

about its actual origin, stops (e.g. stopover, and suspension of movement), moves

(e.g. passing and running), destination, bus route, street names, and duration. At

the aggregated scale, the trips are sorted out in chronological order and real-world

patterns emerge showing the complex behaviour of the Codiac transit network.

Figure 4.4: Overview of our IoT-GIS platform developed for Codiac Transit.

Every bus in the Codiac Transit network is considered as an IoT device for

the purpose of describing our mobility context. In total, data was collected for 800

trips containing 642 bus stations belonging to the 30 bus routes during the period of

one year. The geographical distribution of the trip network is visualized in Figure

4.5.

4.5.1 Data Ingestion Task

The tuples have been continuously pushed from the running buses to our PostgreSQL

database on the west cloud of Compute Canada since 01/06/2016. We retrieved a
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Figure 4.5: The Codiac Transit Network.

year of streaming data from 01/06/2016 to 25/05/2017 to explain the implementa-

tion of our mobility context. Each tuple has 17 attributes described as one of the

following:

1. vlr id: The ID of the data point in the vehicle location reports table

2. route id vlr: The route ID in the vehicle location reports table

3. route name: The route name

4. route id rta: The route ID in the route transit authority table

5. route nickname: The abbreviation of the route

6. trip id br: The trip ID in the bid route table

7. transit authority service time id: Transit authority service time ID

8. trip id tta: Transit authority trip ID
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9. trip start: Start time of the trip

10. trip finish: Finish time of the trip

11. vehicle id vab: Vehicle ID

12. vehicle id vlr: Vehicle ID in the vehicle location reports table

13. vehicle id vlr ta: The descriptive name of the bus

14. bdescription: Bus description

15. lat: Latitude

16. lng: Longitude

17. timestamp: Timestamp of the data point

The data ingestion task is triggered every 5 seconds, and after a period

of one year, there were 65,097,658 tuples stored in the PostgreSQL database that

were used for the data cleaning task. Algorithm 6 provides the pseudo code for the

execution of the data ingestion task.

4.5.2 Data Cleaning Task

The data cleaning task is triggered by a continuous query using a time window (i.e.

the query runs automatically every 5 seconds) as shown in Table 4.2.

Errors and inconsistencies information needed to be corrected and filtered

out. In the case of missing tuples, 480,000 tuples were deleted accounting for 0.75%

of total of 65,097,658 tuples, and because 6,000 bus trips had more than 100 missing

tuples, they have been removed as well. Furthermore, around 6,000 tuples were
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Algorithm 6: Pseudo-code developed to perform the Data Ingestion Task.

Data: Set of G = (T1, T2, T3, ...) such that Ti = (Si, xi, yi, ti) is a data tuple
streamed every 5 seconds.

Result: G = (T1, T2, T3, ...) with Ti ⊆ G such that G was stored in
PostgreSQL database in the Cloud.

1 Initializing database;
2 while True do

// run the loop forever

3 establish connection;
4 read(G);
5 forall Ti ⊆ G do
6 if Ti valid then
7 insert(Ti) to the database;
8 print “Successful” ;

9 else
10 print “Failed” ;
11 pass;

12 end

13 end
14 delay(5); // ingest data streams every 5 seconds

15 end

Description SQL Statement

Get all raw tuples given a time period
SELECT *
FROM moncton data
WHERE gps timestamp BETWEEN ‘2016-06-01’ AND ‘2017-05-25’

Table 4.2: SQL Statement implemented for the cleaning task.

standardized due to the cases of redundant attributes, missing attribute values, and

wrong attribute values. Finally, 38,167,787 tuples were detected to be duplicated

tuples, and consequently, they have been deleted as well. At the end, the cleaning

data file consisted of 26,443,871 tuples which were used for the data contextualization

task. Algorithm 7 provides the pseudo code developed to perform the data cleaning

task.
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Algorithm 7: Python pseudo-code developed to perform the data cleaning
task.

Data: Set of G = (T1, T2, T3, ...) such that Ti = (Si, xi, yi, ti) is the raw tuple
queried from database

Result: U = (Ti, ...) with Ti is cleaned and U ⊆ G is cleaned as well
1 Function Main(G):
2 forall Ti ⊆ G do
3 extract Trip Ki from G (Ki= Set of different Ti);
4 foreach Ki ⊆ G do
5 data 1 = clean missing tuple(Ki);
6 data 2 = fix missing attribute(data 1);
7 data 3 = fix wrong attribute(data 2);
8 data 4 = eliminate redundant attribute(data 3);
9 D = eliminate duplicated tuple(data 4);

10 end
11 U = U.append(D);

12 end
13 return U ;

4.5.3 Data Contextualization Task

The input data for this task consist of a set of cleaned tuples U = (T1, T2, ...) for a

one-year period. However these tuples require to be ordered by trip (trip id br), bus

route (route id vlr), and date (timestamp). This ordering is important to produce a

set of contextualized tuples Q = (Ti, ...) such that each tuple in the set Q is ordered

for performing posteriori computations such as the Euclidean distances for detecting

stops and moves. To this end, the MapReduce framework was used (Figure 4.3).

The map function was responsible for selecting and ordering tuples into many small

subsets in a parallel manner. All tuples with the same Route ID, same Trip ID, and

same Date were grouped and sorted in a chronological order. Once the map function

finished, the reduce function was used to implement the steps of the contextualization

task. Algorithm 8 provides the pseudo-code developed to perform the data cleaning

task.

Figure 4.6 illustrates the contextualized steps for the bus trip 51-12 of the
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Algorithm 8: Python code developed to perform the data contextualization
steps.

Data: Set of U = (T1, T2, T3, ...) such that Ti = (Si, xi, yi, ti) is the cleaned
tuples

Result: Q = (Ti, ...) such that Ti = (Si, xi, yi, ti, context1, ...contextn) is the
contextualized tuples

1 Function Mapper(U):
2 foreach Ti ⊆ U do
3 key = Ti(RouteID, TripID,Date);
4 value = Ti;
5 Zi = shuffle(key, value); /* sort all tuples with the same

Route, same Trip and same Date to many small subsets Zi

*/
6 end
7 return < Ti(RouteID,TripID,Date), Zi >;

8

9 Initialize Q = Empty;
10 Function Reducer(< Ti(RouteID,TripID,Date), Zi >):
11 foreach key Ti(RouteID,TripID,Date) do
12 Initialize R = Empty;
13 forall tuple Ti ⊆ Zi do
14 var1= stop move detection(Ti);
15 var2= classification(var1);
16 var3= street name annotation(var2);
17 var4= bus stop identification(var3);
18 var5= intersection identification(var4);
19 var6= arrival departure identification(var5);
20 var7=od identification(var6);

/* var7 = (Si, xi, yi, ti, context1, ...context7) */

21 R = R.append(var7)

22 end
23 Q = Q.append(R)

24 end
25 return Q;

route 51 on the date 15-06-2016. This particular trip was randomly selected for

explaining the outcomes of the contextualization task.

Step 1 - Stop/Move Detection: For determining whether a bus was moving

or had stopped off or had suspended its movement, an empirical radius value of 15

metres was selected to identify moves and stops. The Euclidean distance was also
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Figure 4.6: Overview of the automated steps designed for the data contextualization
task.

determined based on two consecutive tuples, and if this distance was larger than 15

metres, a new attribute which contains the value “move” was attached to the second

tuple. In contrast, if this distance was less than 15 metres, the “stop” attribute value

is attached to the second tuple. Figure 4.7a shows the contextualized results of Step

1.

Step 2 - Stop/Move Classification: This step was carried out by adding one

new attribute which contained one of the following values:

• Running: when a bus is running on a street segment.

• Passing: when a bus passes a bus station because no passengers were waiting

to be dropped off or get on.

• Suspension of movement: It may occur due to an intersection, stop sign, acci-

dent, or traffic jam.

• Stopover: when a bus stops at a bus station for dropping off or picking up

passengers.
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First, a query was executed to retrieve the geographical location of all

the bus stations of a bus route from the PostgreSQL database (Table 4.3). This

information was available from the GTFS data previously stored in the PostgreSQL

database.

Description SQL Statement

Get a list with all bus stations

SELECT trip id, stop id,
stop sequence, depart return, change direction, stop lat, stop lng
FROM moncton gtfs dim
WHERE trip id = ‘trip’
ORDER BY stop sequence ASC

Table 4.3: SQL Continuous query for the Stop/Move Classification Step.

Afterwards, the algorithm created a circular zone with a radius of 30m

for each bus station. The stops which are located inside the buffer are classified as

“stopovers”; otherwise, they were classified as “suspension of movement”. Moreover,

the moves which were located inside the buffer were classified as “passing”; otherwise

they were classified as “running” on a street. In this step, the moves and stops be-

longing to this bus trip were classified as running, passing, suspension of movement,

and stopover. The classification results of this step are illustrated in Figure 4.7b.

Step 3 - Street Name Annotation: For this step, a query was designed to

automatically retrieve the names of the street where a move or stop was located at

(Table 4.4). Therefore, the GIS layer already stored in the PostgreSQL database

was used for the contextualization. This was not a non-trivial step because the

geographical coordinates of the stops and moves were obtained from GPS signals

which can range from 10m to 100m accuracy in urban areas (Salarian et al., 2015).

Using a grid-based buffer zone in PostGIS played an important role in indexing which

street segment any cell belongs to, after localizing the moves and stops within a cell,

and consequently, identifying the street name.

The GIS layer containing a 30m buffer zone along each bus route line of the
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(a) Stop/Move Detection.

(b) Stop/Move Classification.

Figure 4.7: Results for one trip of the bus route 51.

Codiac transit network was created. Table 4.5 provides query statements to create

the geographical grid cells for each bus route using bus route 51 as an example.

First, a square grid of 10m cell is created using a geo-spatial query as reference layer

and stored in the PostgreSQL database. Second, a query is used to retrieve only

the square cells within the 30m radius from the street segments belonging to a bus
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Description SQL Statement

Get a list with all street segments

SELECT nearest street
FROM route “+line+” grid AS g
WHERE
ST SetSRID(ST MakePoint“ +str(point)+ ”, 4326) &&
.geom lat lon

Table 4.4: Continuous query for the Street Name Annotation Step.

route. The results of the query are stored in a new geo-spatial table in our database.

Finally, we query the GTFS table to get the list street names of the bus route and

assign the street name for each square cell (See Figure 4.8a).

SQL Statement

– Create a table specifically for each route that holds the grid cells
DROP TABLE IF EXISTS route 51 grid;

– Create the table for the route from those grid cells within a 30m radius of the road
CREATE TABLE route 51 grid AS
(SELECT * From moncton grid 10m AS m
WHERE ST DWithin((SELECT geom lat lon FROM bus routes
WHERE route id = ‘51’), m.geom centroid, 30, false));

CREATE INDEX geom centroid 51 index ON route 51 grid USING GIST (geom centroid);
CREATE INDEX geom 51 index ON route 51 grid USING GIST (geom);
CREATE INDEX geom lat lon 51 index ON route 51 grid USING GIST (geom lat lon);

– Import the annotated bus lines
ALTER TABLE route 51 grid ADD nearest street character varying(50);
UPDATE route 51 grid SET nearest street = (
SELECT s.stname
FROM line51 streetnames as s
ORDER BYgeom centroid <->ST Transform(s.geom, 4326) LIMIT 1);

Table 4.5: Continuous queries used for creating the grid cells.

Figure 4.8 shows an example of the grid-based buffer zone used for tagging

the street names for one trip of bus route 51. In this case, it is possible to see that

the moving bus has not followed the assigned bus route (See yellow points on the

street block on the right in Figure 4.8). This might have occurred due to an accident,

road construction, or any other event that required the driver to drive on different

street segments. In the case that a moving bus does not follow the designated street
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segment, the algorithm generates the “wrong street segment” value. Such a problem

was not foreseen by our automated task. More research work is needed to determine

how to deal with unexpected annotation errors in an automated way.

(a)

(b)

Figure 4.8: Example of the 30m buffer zone for executing the street name annotation
step.
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Step 4 - Geographical Feature Annotation: The next step is to tag a bus

station id to each tuple containing the attribute values equal to stopover and passing.

This is an important step to provide a link with the bus station id information

available from the GTFS data. This was achieved by creating a circular zone of

a 30m radius around each bus station of a transit network, and matching it with

the stop (i.e. stopover and passing) location of a moving bus (Figure 4.9a). It is

important to point out that the algorithm also needs to verify the direction of a

moving bus (e.g. eastbound and westbound) in order to identify the bus station

where a stopover/passing was actually located. We selected a tuple located at the

middle of a bus route to use it as a reference point for identifying the direction of

a moving bus. Each stop can be then annotated using “outbound” and “return”

values (Figure 4.9b). Using the GTFS data stored in the PostgreSQL database, the

location of a bus station is compared with an actual stop of a moving bus (Figure

4.9).

Step 5 - Street Intersection Annotation: The next step was to tag an in-

tersection id to each tuple. This step starts with a continuous query used to select

from the PostgreSQL database all the intersections (Table 4.6).

Description SQL Statement

Get a list with all street intersections
SELECT *
FROM moncton intersection
WHERE route id = ‘route’;

Table 4.6: Continuous query for the Street Intersection Annotation Step.

The algorithm creates a circular zone with a radius of 30m for each street

intersection. The tuples containing stops and moves that were located inside the

circular zone were tagged with the intersection id. Otherwise, the NULL value is

used (Figure 4.10).
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(a)

(b)

Figure 4.9: Results of the bus stop identification step for one trip of bus route 51.

Step 6 - Temporal Annotation: The aim of the next step was to determine

the actual arrival and departure time of a moving bus for dropping off or picking up

passengers. In this case, the algorithm verifies for the timestamp of the first stopover

within the circular zone of 30m radius around each bus station, and considers it as the

actual arrival time. Similarly, the timestamp of the last stopover within the circular

zone is considered the departure time (Figure 4.11a). This step can be improved

if automatic passenger counters (APCs) are used in a transit network because they
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Figure 4.10: Results of the intersections identification step for one trip of bus route
51.

provide information about passenger activity on bus trip time.

Step 7 - Trip Annotation: Finally, the last step was to tag each first tuple

of a bus trip as origin, and each last tuple of a bus trip as destination (Figure 4.11b).

4.6 Discussion of the Results

The subsections below analyze several aspects of the IoT-GIS platform performance

as well as the analysis of the mobility context to support smart transit application

in the small urban areas. The first one evaluates computing performance of the

analytical tasks run on the IoT-GIS platform based on the processing time metric.

The second set of analyses focuses on many aspects to improve service quality of the

smart transit application, including service coverage, pace behavioural, congestion

patterns, and route connections.
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(a)

(b)

Figure 4.11: Results from steps 6 and 7 of the contextualization task.
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4.6.1 Overall Computing Performance of the IoT-GIS Plat-

form

The section evaluates the computing performance of the IoT-GIS platform. The data

ingestion task was performed every 5 seconds achieving a performance latency near

to 0.0 ms. Low latency processing is key when running the data ingestion task, and

this could be achieved by optimizing algorithms to minimize the impact of disk I/O

and the use of faster networking. Any delay in the execution of this task will have

an impact on the execution of the other automated tasks in our IoT-GIS platform.

Figure 4.12 shows the total processing time to execute the data cleaning task using

the data streams gathered for one day, one week, two-week, and one month periods.

Three bus routes having different trip frequency scheduling, high (Bus Route 51),

medium (Bus Route 61), and low (Bus Route 80), were selected for this comparison.

As we can see, the processing time varies according to the type of route and number

of data streams.

Figure 4.12: The measured cleaning times of 3 sample bus routes (51, 61, 80) oper-
ating in different areas over different time windows.

Aiming to evaluate the automatic batch processing of the data contextual-

ization task using MapReduce, two datasets were extracted from the cleaned tuples

to run in Hadoop. The first dataset A contains the 12.75 million cleaned tuples from

01/06/2016 to 15/12/2016. The second data set B contains 13.69 million cleaned
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tuples from 16/12/2016 to 25/05/2017. Figure 4.13 shows the processing time for all

phases including map phase, shuffle phase, and reduce phase. Notably, the Reduce

processing time is much longer than Map processing time because the Reduce phase

runs all the data contextualization steps while the Map phase mainly sorts tuples

into separate cluster of the same bus route.

Figure 4.13: The measured processing times obtained from the MapReduce frame-
work.

4.6.2 Experiment Evaluation

Table 4.7 provides an overview of the total number of tuples that have been contextu-

alized according to our mobility context. In total, 82,044 trips have been processed

by the analytical tasks and as a result, they have been stored in the PostgreSQL

database. It is worth noticing that the total number of trips can vary significantly

according to the bus routes, from 129 up to 10,263 trips, showing the high scalabil-

ity of our proposed approach. Moreover, the total number of tuples that have been

contextualized can also vary from, for example, 32,541 tuples annotated as “Move”

for bus route 60LT to 2,049,041 tuples annotated as “Move” for the bus route 51.

With the statistics at hand, new insights have emerged about the patterns

of the different paces of the bus routes of the Codiac transit network that point

out a variety of transit improvements, infrastructure enhancements, and ridership

strategies. First, the highest bus stop activity was found in the 52 bus route which

is a a route with 20 bus stations and running in approximately a circular path in

downtown Moncton. With 892,585 stopovers against to only 71,043 cases of buses
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MOBILITY CONTEXT

BUS ROUTE Moves Stops Running Passing Stopover
Movement
suspended

Trips

50 661,373 552,356 643,592 17,781 268,294 284,062 4,270
50S 45,809 35,820 44,755 1,054 13,113 22,707 301
51 2,049,041 2,135,951 1,779,599 269,442 888,435 1,247,516 10,263
52 1,359,354 2,079,425 1,288,311 71,043 892,585 1,186,840 9,900
60 744,855 579,926 608,990 135,865 362,600 217,326 4,591
60LT 32,541 9,648 27,903 4,638 2,345 7,303 129
61 907,851 562,502 815,458 92,393 262,306 300,196 5,133
61B 493,097 300,222 491,805 1,292 91,043 209,179 2,884
62 966,933 462,028 862,076 104,857 218,922 243,106 5,039
63 1,073,340 429,122 944,673 128,667 219,738 209,384 5,217
64 868,025 621,854 707,958 160,067 252,693 369,161 5,246
64B 177,181 98,161 157,832 19,349 33,207 64,954 1,011
65 810,943 624,252 707,095 103,848 211,322 412,930 5,085
66 320,882 117,009 294,982 25,900 22,079 94,930 936
67 346,419 138,161 305,164 41,255 30,794 107,367 1,774
68 359,649 151,026 306,361 53,288 36,722 114,304 1,855
70 350,666 223,059 331,537 19,129 109,925 113,134 2,033
71 363,895 242,956 326,833 37,062 54,591 188,365 2,159
80 235,039 106,009 206,429 28,610 18,658 87,351 1,174
8081c1 185,254 90,095 163,520 21,734 37,506 52,589 478
81 728,384 398,293 650,614 77,770 240,081 158,212 1,966
93 616,593 295,629 566,486 50,107 91,111 204,518 3,077
939495 11,346 1,804 10,552 794 344 1,460 40
94 833,145 390,926 760,908 72,237 161,111 229,815 4,578
95 541,689 289,693 494,189 47,500 114,486 175,207 2,905

Table 4.7: Contextual statistics for the Codiac transit network.

passing a bus station, it reveals a captive ridership for this bus route (92% of usage

pattern). However, the high number of cases of movement suspension (1,186,840

or 61%) indicates the need for signal synchronization and bus priority on the Main

Street where this bus route operates. In contrast, the feeder route 51 having 53

bus stations shows a similar pace behaviour in terms of total number of stopovers

(888,435), but in this case, having a much higher number of passing events (269,442

or 23%). This might be an indication of bus stations that are not being utilized by the

catchment ridership area, mainly because this service is serving the disadvantaged

and the elderly.
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Second, the results also reveal the bus routes where there is a larger number

of passing events in relation to stopovers. This pace behaviour emerges from the bus

routes serving remote areas of the metropolitan region and the Codiac agency must

entice non-captive riders with improved levels of service or other improvements.

They are bus route 66 serving the north region of Moncton, bus route 67 serving the

Industrial Park of Moncton, bus route 68 serving the rural area of Moncton towards

Salisbury, and finally bus route 80 serving Riverview. Moreover, all these routes

present a moderate number of movement suspensions, in particular bus routes 67

and 68 which have similar suspension patterns of 31% and 32% respectively. In this

case, both services have to cross Highway 15, requiring an innovative strategy to

optimize these services given this network infrastructure constraint.

Third, Table 4.7 also shows the pace behaviour of two new bus routes

envisaged for merging routes 80 and 81, as well as merging bus routes 93, 94, and 95.

Figure 4.14 illustrates how the routes have been changed. These new routes have

been operated for only one trip a day for a total of 40 days. It is interesting to point

out that new route 80/81 has shown a ridership improvement due to an increase of

the number of stopovers of old route 80. Conversely, this is not the case for new

route 93-94-95, since there has not been an increase of the number of stopover.
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(a) (b)

(c) (d)

Figure 4.14: Illustration of the old and new bus routes: (a) Bus route 80 and 81. (b)
Merged bus route 8081. (c) Bus route 93, 94, and 95. (d) Merged bus route 939495.

Finally, the Pace Behavioural Driving Index (PBDI) is computed for each

bus route as:

P̂BDI = NORM

(∑
Si +

∑
Di∑

Ri +
∑
Pi

)
Where:

∑
Si: is the total number of stopovers.
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∑
Di: is the total number of movement suspended.

∑
Ri: is the total number of running.

∑
Pi: is the total number of passing.

In order to classify the traffic flow as follows:

• from 0 to <= 0.29484388 : no traffic

• > 0.29484388 to <= 0.3574634 : unblocked flow

• > 0.3574634 to <= 0.46832302 : optimal flow

• > 0.46832302 to 0.999 : congested flow

Table 4.8 shows the results for each bus route. This index can be used by

transit managers to identify the bus routes that maximize the passenger carrying

capacity of existing corridors, streamline transit services, and improve access to the

transit system.

For the evaluation of these results, we have examined the monthly number

of total stops and moves that have been computed for bus route 51. Table 4.9 shows

the similar patterns encountered for “stops” and “moves”, having the highest peaks

in the months of December and March.

Moreover, congestion patterns have also been inferred by looking at the

occurrence of “stops” and “moves” at different street segments. Figure 4.15 shows

that the highest number of stops of bus route 51 have occurred at Plaza and Main

Street probably due to traffic and weather conditions, meanwhile the Weldon St.

and Mountain St. have a larger number of “moves”.
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Bus Route Normalized Pace Behaviour Driving Index Traffic Flow
939495 0.10394008 no traffic
60LT 0.19381871 no traffic
66 0.23837638 no traffic
67 0.26071923 no traffic
63 0.26135618 no traffic
68 0.27451253 no traffic
80 0.29484388 no traffic

94 0.30673496 unblocked flow
62 0.31236418 unblocked flow
93 0.31342797 unblocked flow
8081c1 0.31792333 unblocked flow
95 0.34960472 unblocked flow
81 0.3574634 unblocked flow

64B 0.36216888 optimal flow
61B 0.39801502 optimal flow
61 0.40504083 optimal flow
70 0.4158296 optimal flow
71 0.43645638 optimal flow
64 0.46832302 optimal flow

65 0.50322119 congested flow
60 0.50896762 congested flow
50S 0.51116849 congested flow
50 0.54596138 congested flow
51 0.68144364 congested flow
52 0.999 congested flow

Table 4.8: The overview of Pace Behavioural Driving Index of each route in the
transit network.

Furthermore, the most congested intersections were found by looking at

the the total number of the suspension of movement for bus route 51. Figure 4.16

shows the most congested intersections as being Intersection ID – 778: (Birchmount

& Mountain), Intersection ID – 2215: (High & Mountain), Intersection ID – 1592:

(Maplelon & Mountain), Intersection ID – 2836: (Mountain & Vaughan Harvey).

Transit vehicles require the synchronization of urban traffic signals since

Jun-16 Jul-16 Aug-16 Oct-16 Nov-16 Dec-16 Jan-17 Feb-17 Mar-17 Apr-17 May-17

Stop 171,503 13,760 3,687 48,259 166,013 378,158 225,701 180,005 349,587 303,612 280,513
Move 160,543 16,336 4,697 58,568 153,390 385,446 216,495 155,427 354,073 285,827 245,907

Passing 20,433 2,727 793 9,012 18,990 49,826 27,785 20,748 49,129 41,756 35,282
Movement suspend 89,117 7,501 1,976 35,320 107,572 224,933 136,093 111,212 209,068 181,363 175,555
Running 140,110 13,609 3,904 49,556 134,400 347,952 188,710 143,157 321,316 258,846 224,184
Stopover 82,386 6,259 1,711 12,939 58,441 168,378 89,608 77,648 157,141 137,805 120,381

Table 4.9: Monthly total number of stops and moves for bus route 51.
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Figure 4.15: Overview of the total number of stops and moves of all trips of bus
route 51.

Figure 4.16: Total number of stops (suspension of movement) per intersection for all
trips of the bus route 51.

their suspension of movement at the intersections might cause delays. Figure 4.17

illustrates the location of the intersections that have the most impact on time ad-

herence for bus route 51. This information shows a need for synchronization among

these intersections

Despite the fact that 51 is the most used bus route in the network, Figure

4.18 shows while five bus stops near downtown were very busy, over 10 bus stops

were unlikely to stop to pick up passengers, and 9 bus stops have not been used for
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Figure 4.17: The movement suspended pattern along the bus route 51.

a period of one year. According to this analytical result, the allocated resource for

the bus stops need to be optimized to eliminate the redundant bus stops along this

bus route.

Figure 4.18: Total number of stopovers at each bus stop for all trips of the bus route
51.
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4.7 Conclusions

Developing an IoT-GIS platform for supporting automated tasks requires an under-

standing of the structure of data streams (i.e. sequence of tuples) and communication

network together with the cloud architecture needed for running the tasks. This is

a challenging process, mainly because any automated analytical task will consist

of many automated steps that rely on the selected mobility context. In this paper

we have used the Codiac transit network to describe a mobility context that illus-

trates how pace driving behaviour can be computed and routing alternatives can

be evaluated to improve the average speed of service. Our IoT-GIS platform pro-

vides operational information to small transit agencies despite the disadvantage of

not having APC and AFC data. The platform has also the potential to be used by

small agencies that tend to have limited staff available to develop dedicated programs

for analysing the data to conduct their strategic planning process. Other mobility

contexts where we could apply our IoT-GIS platform include autonomous vehicles

networks using V2X communication for improving safety.

Our IoT-GIS platform has contextualized the raw data to show that it is

possible to explore the semantics of a mobility context as well. However, our ap-

proach requires high performance computing power to support all the automated

tasks, especially the contextualization task. Analytics performed over contextual-

ized streaming data could potentially revolutionize transit network services that will

be able to adapt at near real time to current or expected mobility contexts, imple-

menting real-time operation controls and recommender systems. The outcomes from

the data cleaning task indicate that it is not worth to send all the data streams to

the cloud since most of them will not be used in the contextualization task. Almost

half of the tuples used in our implementation were deleted during the data cleaning

task. This implies that a significant number of moves and stops will not be used and
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could lead to errors and bias in the further analysis. Therefore, other computing ar-

chitectures such as mobile fog computing might be more appropriate for performing

the data cleaning task at the edge of the network, rather than the cloud. Mobile fog

computing is defined as “a scenario where a huge number of heterogeneous (wireless

and sometimes autonomous) ubiquitous and decentralized devices communicate and

potentially cooperate among them and with the network to perform storage and pro-

cessing tasks without the intervention of third-parties” (Vaquero and Rodero-Merino,

2014). Data cleaning tasks can be designed for running in a sandboxed environment

at a fog node. This will help to incorporate a new step in the data digestion task

to handle late tuple arrivals. Future research work includes implementing the data

cleaning task at a mobile fog node which would be installed inside a vehicle of a

transit network.

Finally, our IoT-GIS platform has an enormous potential to be used to

calculate transit performance indicators that have been previously computed using

expensive transit demand models. Some examples include daily trip pattern con-

struction for service adjustment planning, schedule coordination planning as well as

in links re-routing and on-time transit performance improvement. While researchers

have recognized the potential of using GPS coordinates for transit performance mon-

itoring, there has been limited research in dealing with the practical considerations

associated with the analysis of massive amounts of transit feeds. It is also important

to point out that the 30m circular zones might not be a universal mobility radius

to be adopted by any transit network. More research work is needed to identify the

optimal radius value for the circular zones used for bus stations and intersections.

Our IoT-GIS platform provides a unique approach to enable online applications for

transit performance analysis in the near future.
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Chapter 5

Conclusions and Future Research

Work

5.1 Summary of the Research

In the past few years, the IoT research paradigm has been shifting from build-

ing physical infrastructures to developing analytical capabilities according to the

requirements of IoT applications. However, the mobility and co-location of IoT de-

vices, coupled with the high velocity, variety, and volume of IoT data streams created

by these geo-distributed devices, have presented significant challenges for handling

the data streams in a timely way. This dissertation proposed a conceptual frame-

work that has addressed these challenges and provided both low latency and low

complexity.

Three published articles have been selected to describe the core of the pro-

posed “Analytics Everywhere” framework in Chapters 2, 3, 4. The summary of each

chapter is presented as follows:
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• Chapter 2 proposed my “Analytics Everywhere” framework, which has demon-

strated the possibility of developing a conceptual prototype that is capable of

integrating a network of distributed compute nodes (i.e. edge, fog, and cloud

nodes) into a unique continuum. This contiuum provided a variety of comput-

ing resources to perform multiple analytical capabilities, including descriptive,

diagnostics, and predictive analytics. In this framework, a data life-cycle, which

consists of accumulated IoT data streams, plays an important role in a priori

mapping between analytical capabilities with the appropriate computation re-

sources to ensure that each automated analytical task had the right data at

the right time. The proposed framework has also been validated through a

smart transit scenario to support three groups of users (e.g. transit operators,

bus drivers, and passengers) with different user applications (e.g. schedule

adherence, abnormalities detection, and trip behaviors prediction).

• Chapter 3 presented the design and implementation for an edge-fog-cloud ar-

chitecture to support a seamless execution of automated analytical tasks of

my “Analytics Everywhere” framework. As an evolution of the last chapter,

this architecture has been designed with several main modules including Ad-

min/Control, Stream Processing & Analytics, Run Time, Provision & Orches-

tration, and Security & Governance that were integrated into a unique fabric

working on top of an edge-fog-cloud continuum. Two data life-cycles have been

implemented to carry on various analytical tasks (descriptive, diagnostics, and

predictive analytics) in both continuous and accumulated IoT data streams.

The proposed framework has been validated using a smart parking scenario in

the City of Saint John, NB, Canada.

• Chapter 4 described the development of an IoT-GIS platform for supporting

automated tasks to retrieve, integrate, and contextualize IoT data streams with

the purpose of adding value and insights to the provision of transit services.
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Our proposed platform was designed with the ability of couple data streams

with automated tasks with the purpose of assessing existing transit services.

Since mobility plays an important role in the explanation of the phenomena,

it reinforces different perspectives and provides a true understanding of the

background of the IoT problems. This IoT-GIS platform was designed to per-

form three automated analytical tasks: data ingestion, data cleaning, and data

contextualization. The platform also took into account the mobility contexts

given by a transit agency of a small urban area. It has shown the potential to

provide operational information to improve the average speed of service.

5.2 Research Contributions

The research questions in this dissertation revolve around:

• How to combine various resource capabilities for performing multiple analyt-

ical capabilities based on different IoT data life-cycles using continuous and

accumulated streams to form an unique integrated framework?

• How to integrate IoT and GIS into the edge-fog-cloud continuum without com-

promising resource capabilities?

• What the advantages and disadvantages of the proposed approach in smart

cities are.

This dissertation has demonstrated that it is possible to combine various

computational resources, such as compute nodes at the edge, fog, and cloud com-

puting environments to support IoT applications. Moreover, it has also proved the

feasibility of implementing various automated analytical tasks for supporting stream-

ing descriptive, streaming diagnostic, and streaming predictive analytics according to
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different IoT data life-cycles. For example, two data life-cycles have been developed

and executed to perform different analytical capabilities based on both continuous

and accumulated streams in Chapter 3, while Chapters 2 and 4 described auto-

mated analytical tasks using accumulated streams for supporting various streaming

descriptive, streaming diagnostic, and streaming predictive analytics.

Aiming to find a solution to integrate IoT and GIS into the edge-fog-cloud

continuum without compromising resource capabilities, Chapter 4 proposed an IoT-

GIS platform to retrieve, integrate, and contextualize accumulated data streams in

the cloud. This platform is not fully integrated into an edge-fog-cloud continuum.

However, it is a first step towards designing an IoT-GIS platform that is able to

provide GIS functionalities and interoperability between IoT devices and big data

analytics softwares to analyze massive amounts of data streams without human in-

tervention. In addition, this platform indicates that there is a need to move and

implement some analytical tasks from the cloud computing environment to the edge

and fog computing environments in order to bring analytical capability closer to the

IoT devices and to fully integrate this platform into an edge-fog-cloud continuum.

Finally, two IoT applications (smart transit and smart parking applications)

have been developed and implemented that aims to validate the advantages and

disadvantages of the proposed “Analytics Everywhere” in smart cities. The proposed

“Analytics Everywhere” framework was developed based on the research premise that

IoT applications are convenient for pushing the computation toward the edge network

while trying to keep most of the data as close as possible to where it is generated.

Some immediate advantages can be obtained from this approach. For example, data

privacy can be retained to the user to a certain extent. Also, the cost to transfer

enormous amounts of data to the remote data centers can be reduced, while the

analytical results can be delivered quickly to a variety of users. Furthermore, the
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high availability of the provided IoT applications and services can be preserved to a

certain extent, since the analytical tasks are able to perform in close proximity to the

IoT devices. However, it is worth noting that the proposed “Analytical Everywhere”

framework does not need to be modified to support dynamic task sharing, since

the analytical tasks are assumed to be a priori allocated, exploiting the different

resources regardless of workload balancing.

By proposing a novel “Analytics Everywhere” framework, several major

scientific contributions have been emerged during this research which can be sum-

marized as follows:

1. I proposed an “Analytical Everywhere” framework that integrates computa-

tional resources needed for a seamless execution of a network of analytical

tasks having automated analytical capabilities, generating useful and high level

information in a timely way.

2. I demonstrated that a single computational resource (e.g. cloud) is not suffi-

cient to support all analytical capabilities that are needed for IoT applications,

considering computing power, data stream management, storage, and network-

ing capabilities.

3. I discussed the challenges and how an “Analytics Everywhere” framework can

be designed to perform descriptive, diagnostic, and predictive analytical tasks.

Moreover, the proposed “Analytics Everywhere” framework has been validated

using the smart transit and the smart parking scenarios by highlighting the

pitfalls and discussing the experiences.

4. Most of the IoT architectures rely on a cloud environment in which n-tiers of

horizontal layers are designed to perform analytical tasks. My approach pro-

posed a new architecture based on an integrated fabric of compute nodes that
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are designed to work together to perform many analytical tasks, which are trig-

gered by IoT data streams transported through an edge-fog-cloud continuum.

5. Automated analytics for IoT data streams is still in its infancy, and applica-

tions usually require a diverse number of outputs having different temporal

granularities. There have been very little research reported on the impact of

analytical tasks in the IoT architectures. The scientific contribution of this

research is therefore to ascertain this impact using a smart parking and smart

transit scenario.

6. An IoT-GIS platform has been designed and developed to handle the contin-

uous incoming data streams from IoT devices through a variety of analytical

tasks performing on this platform.

7. IoT data streams have been explored via the IoT-GIS platform not only tempo-

rally and spatially, but the notion of a mobility context is also integrated into

this platform so that it can help us to explain the phenomena, reinforcing dif-

ferent perspectives, and providing a greater understanding of the background

of the problems.

8. Automated analytical tasks have been implemented on the IoT-GIS platform

without human intervention and can simultaneously cope with the incoming

unbounded IoT data stream at a high data rate.

5.3 Future Work

The proposed “Analytics Everywhere” framework can also be applied in many other

smart city applications and can provide some benefits as aforementioned. However,

a priori mapping of streaming analytical tasks and of computational resources in a
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static manner is a limitation that needs to be addressed in the near future. Hence,

this study opens up many new research directions. Specifically, streaming analytical

tasks and computational resources could be dynamically mapped together in the

next development step. The support of continuous and accumulated data life-cycle

orchestration will play a paramount role in mapping the analytical capability and

computational resources in a dynamic sense. To achieve this goal, further research

towards mitigating the issue with the concept drift to be addressed in the future.

Since the underlying distribution of the incoming IoT data stream may change over

time. As a result, the algorithms/models, which are built based on the older data

tuples, will be obsoleted and no longer accurately reflected the distribution of the

new data tuples.

One important lesson drawn from this study is that if any aspect of the edge-

fog-cloud resources is considered in isolation, it would not be able to manage the data

life-cycles of IoT applications without compromising functionality or performance.

Many threats to the validity of the proposed architecture using the edge-fog-cloud

computing might arise in other IoT applications. Therefore, the proposed framework

should be extended by considering the security, latency, fault tolerance, and privacy

requirements of IoT applications. Moreover, it is challenging to find the optimal

balance of all analytics tasks leading to the highest value chain discovered from

IoT data streams. This is because there are currently no metrics to compute the

correlation between the complexity and the obtained new insights. Thus, a new set

of metrics is needed for identifying the balance point and for providing feedback

about the optimal performance of the framework. Other IoT applications in smart

cities should be implemented for further validation of the proposed framework.

In an attempt to integrate IoT and GIS in the proposed “Analytics Every-

where” framework, an IoT-GIS platform has been developed in the cloud computing
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environment to provide the automated streaming analytical tasks in a mobility con-

text. However, the results from the data cleaning task proved that it is not reasonable

to send all the data streams to the cloud. Thus, extending streaming analytical tasks

and GIS functionalities to the edge and fog computing environment is definitely the

next research step.

The proposed “Analytics Everywhere” framework is capable of producing

knowledge/insights to create value within each streaming analytical task. However,

the next research question is: How can a streaming analytical task in the network

of tasks reuse and exploit the gained knowledge from the other tasks to resolve its

own problems? A potential approach that could answer this research question is

the transfer learning methods. Transfer learning techniques involve the concept of

improving learning in a specific domain (target domain) by training the learning

model with the datasets from other domains (multiple source domains), using sim-

ilar features and constraints. Therefore, our future research work will also focus

on developing a transfer learning process for the proposed “Analytics Everywhere”

framework. A transfer learning process should be considered as a new pillar to be

developed and integrated into the current proposed framework. The learning pro-

cess could be described as the outcomes of the analytical tasks which are capable

of being transferred within the distributed compute nodes that are involved in a

data life-cycle to provide the highest overall performance. Transfer learning tasks

will be a priori defined or dynamically allocated depending on future IoT research

scenarios. Some suggested approaches for implementing transfer learning settings in

this framework includes inductive transfer learning, transductive transfer learning,

and unsupervised transfer learning.
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Appendix A

Results from the Descriptive

Analytics Task at the Edge

Figure A.1: Parking usage pattern at each spot on 14 May 2019.
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Appendix B

Clustering Results from the

Diagnostics Analytics Task at the

Fog

B.1 Dendrogram of Clusters for the Next 4 Weeks

of Observation
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B.2 Clustering Results for the Next 4 Weeks of

Observation

Figure B.2: Clustering results for the 2nd week.

Figure B.3: Clustering results for the 3rd week.
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Figure B.4: Clustering results for the 4th week.

Figure B.5: Clustering results for the 5th week.
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B.3 Clustering Results Using PCA for the Next

4 Weeks of Observation

Figure B.6: Clustering results using PCA for the 2nd week.

Figure B.7: Clustering results using PCA for the 3rd week.
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Figure B.8: Clustering results using PCA for the 4th week.

Figure B.9: Clustering results using PCA for the 5th week.
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