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Current Research in loT Computing

* Focus on processing & analyzing loT data
streams using one computing resource:
* Cloud Computing
* Fog Computing
* Edge Computing



Current Research in loT Geomatics

* 10T-GIS is still in its infancy. Collaboraton -

Engagement

Workflow
Integration

* No GIS can handle IoT stream
data
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Research Challenges
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 avoiding bottlenecks
* reducing data latency

e Vast amount of loT data streams will require

e streaming automated analytical tasks
* manage, process, and retrieve high velocity, variety, and
volumes of data.
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Overall Research Goal

* Develop an “Analytics Everywhere” framework to
explore the edge-fog-cloud continuum for
performing automated analytical tasks capable of:

* providing higher-level intelligence from continuous loT
data streams

e generating long-term predictions from accumulated loT
data streams.



RQ1: How can automated analytical tasks be developed
for supporting analytical capabilities such as streaming
descriptive/diagnostics/predictive algorithms/methods?

* |dentify the algorithms/methods that can be used for
supporting automated streaming analytical tasks (analytical

capability).

* |dentify the potential IoT applications in smart cities while
taking into account the availability of loT data streams.



RQ2: How can continuous and accumulated
streams be combined while taking into account
different loT data life-cycles?

* Develop data life-cycles for executing automated analytical
tasks and coping with continuous loT data streams.

* Develop data life-cycles for executing automated analytical
tasks and coping with accumulated loT data streams.

* Implement the data life-cycles for the real-world
experiments.



RQ3: How can loT and GIS be integrated into the
edge-fog-cloud continuum without compromising

resource capabilities?

 |dentify the off-the-shelf tools that can be used to
implement the proposed framework (computational

resources).

e Build the architecture for this new framework based on a
continuum of edge-fog-cloud nodes.



RQ4: What are the benefits and limitations of the
proposed “Analytics Everywhere” framework in

smart cities?

* Implement the “Analytics Everywhere” framework in real-
world experiments to evaluate the proposed approach. Two
experiments were selected according to data availability:
smart transit and smart parking.

* Validate the proposed “Analytics Everywhere” framework.
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Analytics Everywhere Framework

ANALYTICAL CAPABILITY

Consists of algorithms for the
execution of a network of
analytical tasks for loT
applications

DATA LIFECYCLE

Manages the changes @
that data streams go
through during the — /
automated execution

of a network of
analytical tasks

RESOURCE CAPABILITY

Consists of distributed compute nodes (i.e. cloud, fog, and edge
nodes) that provide I/O, storage, computation and processing
power for the execution of a network of analytical tasks



Resource Capability

@ VICINITY

% REACHABITITY IN-MEMORY & STORAGE 3

STANDARDIZATION '5:’“

14



Analytical Capability

A
What will happen?
Predictive
Analytics
Why is it happening?
Diagnostic
Y Analytics
s What is happening? R
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Complexity
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Data lifecycle
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Raw Data
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Descriptive Analytics

Diagnostics Analytics

Predictive Analytics
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Implementation
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Architecture

loT Applications Third Party Integration

Applications

p 2
&%

In-Memory Data Visualization Visualization
Storage (Historical Data) (Real-time Data)

| |
| |
| |
| |
1 |
| |
1 |
| e |
| |
| 1
Stream Processing | | |ladiIC] Processing Library [l
. ] - |
& Analytics i a) @ é}‘} e i
| |
1 |
1 |
| |
1 [
| |
1 [
| [
1 |
1 [
1 [
A

Admin/Control

Provision & Orchestration
Security & Gorvernance

Message Broker loT Device Connector
Run Time IR co oy
________________ N Y
i 0S ' Resource Manager | | Container
Resource Edge Fog Cloud
Capability . N
,/’/ I\‘.‘I e ; //,,/’ ol : \ ___.--"'___‘



Analytical
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Smart Transit
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Smart Transit
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Smart Transit
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Smart Parking
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Smart Parking
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Smart Parking
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Smart Transit
Analytics at the Edge-Fog-CIoud continuum
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Smart Transit

Integrating GIS into our Edge-Fog-Cloud continuum
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Smart Parking

Why are the discovered usage patterns an issue in Saint John?

Average Occupied Frequency for each cluster (n_components=5, distance>19)

Agglomerative Clustering using PCA (Week 2 - May 20-26)
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The design of an IoT-GIS platform for performing automated analytical tasks = M)

Ghacicior
. . . i
Hung Cao*, Monica Wachowicz

People in Motion Lab, University of New Brunswick, Canada

1. Proposed an “Analytics Everywhere”

framework which demonstrates that a single
computational resource is not sufficient to
support loT applications.

Proposed a new architecture based on an
integrated fabric of edge-fog-cloud nodes for
executing a network of analytical tasks.

. Automated analytical tasks have been

implemented into a I0T-GIS platform which
is capable of handling accumulated streams.

Implemented the proposed framework using
two use cases in smart transit and smart
parking.
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Recommendations for Future Work

* The Analytics Everywhere framework

e Streaming analytical tasks and computational resources could be

dynamically mapped together in the next development step.

* Extending GIS functionalities to the edge and fog computing environment

* The proposed architecture could be extended by considering:

Security

Latency

Fault tolerance

Privacy requirements of loT applications

Concept-drift

32



Recommendations for Future Work

* The next research question is:

 How can a streaming analytical task in the network of
tasks reuse and exploit the gained knowledge from the
other tasks to resolve its own problems?

* A potential approach that could answer this
research question is the transfer learning
methods.
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