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Abstract

Society has a very ambitious vision of building smart interconnected cities through the
Internet of Things (IoT). Billions of data streams will be generated by devices using different
networking infrastructures of smart cities, enabling the automation of how the data that
are being collected can be analysed for. However, significant scientific and technological
challenges need to be overcome before IoT-GIS platforms can be widely used. This paper
is a first step towards designing an IoT-GIS platform for performing automated analytical
tasks that are able to retrieve, integrate and contextualize data streams with the purpose of
adding value to the provision of transit services. Three automated tasks are used to describe
our platform: (1) data ingestion for retrieving data streams; (2) data cleaning for handling
missing and redundant data streams; and (3) data contextualization for representing the
mobility context of transit driving behaviour. The Codiac Transit System of the Greater
Moncton area, NB, Canada was used for building a mobility context and evaluating the
cloud architecture that was used to implement our IoT-GIS platform. From the experimental
results, the need for cloud computing for achieving scalability and high performance of our
IoT-GIS platform is validated. Suggestions for the operational management of routes to
improve service quality are proposed based on the analytical outcomes.

Keywords: Internet of Things; automated analytical tasks; mobility context; smart transit

1. Introduction

With the advent of the Internet of Things, the spread of geographically distributed
devices equipped with sensing capabilities will generate real-time data streams that will be
transported through communication networks such as WiFi, Bluetooth, Zigbee, LoRaWan,
and 5G. The IoT devices are usually equipped with many kinds of sensors, ranging from
accelerometers and gyroscopes to proximity, light, microphones, and cameras. They generate
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data streams that are usually an unbounded sequence of tuples that are most likely to be
out-of-order and having a high data rate. A vast number of devices are being embedded
into the very fabric of smart cities in such a way that they will revolutionize operational
functioning and planning, through management, control and optimization of traditional
services such as intelligent fleet management (Sun et al. 2016), smart parking (Mainetti
et al. 2015) and digital health (Banos et al. 2016). This is already causing a shift from
traditional GIS platforms towards IoT-GIS platforms in which IoT devices are linked by
means of communication technologies that are crucial to enable smart cities functioning in
real-time from routinely sensed data (Batty et al. 2012, Song et al. 2017). The fundamental
assumptions underpinning GIS platforms are being challenged due to the proliferation of
sensors, intelligent high bandwidth networks and cloud computing. In particular, traditional
GIS platforms are inefficient mainly because they usually require heavily coordination of
several tasks using limited computing resources. Moreover, the coordination of these tasks
has been time-consuming and error-prone, since the tasks were not fully integrated, requiring
human intervention for executing them to achieve new insights.

Automated analytical tasks must handle the continuous production of tuples flowing
from the devices through a variety of tasks running on IoT-GIS platforms. These tasks will
be performed at regular times (e.g. every hour) or be triggered every time the tuples arrive
at a platform. Previous attempts have been focused on developing automated analytical
tasks for network monitoring (Gupta et al. 2016), fraud detection (Rajeshwari and Babu
2016), data warehouse augmentation (Meehan et al. 2017), risk management (Puthal et al.
2016) and distributed processing of sensor-web data (Duckham 2012). No research efforts
on developing IoT-GIS platforms have been found in the literature so far.

From a conceptual perspective, an IoT-GIS platform will play an important role in
exploring data streams in time and space. Time is an important dimension of this platform,
and different approaches have been proposed in the literature to handle unbounded data
streams, including landmark windows (Leung et al. 2013), sliding windows (Lee et al. 2014),
and tilted windows (Giannella et al. 2003). In contrast, the space dimension has been
neglected so far, even though data streams are being generated over large geographical areas
with fine spatial granularity. The scientific challenge is to integrate the notion of a mobility
context into a IoT-GIS platform as being more than location, date and time (Bettini et al.
2010, Ranasinghe and Walpola 2016).

From an implementation perspective, an IoT-GIS platform will require (1) a pre-build
connector that supports data connectivity to communicate with several devices, (2) a low-
latency database for storing data streams, and (3) high performance processing for sup-
porting the automated tasks. The technological challenge is to design an IoT-GIS platform
that can perform analytical tasks without human intervention (e.g. an event from an IoT
device triggers an analytical task), and at the same time, cope with the transportation of
unbounded data streams where the data rate may overwhelm the processing power of this
platform.

One way to address both scientific and technological challenges is to consider designing
an IoT-GIS platform based on cloud computing for coupling data streams with automated
tasks with the purpose of assessing existing transit services. Towards this end, this paper
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proposes the design of an IoT-GIS platform that supports three automated analytical tasks
taking into account the mobility context given by a transit agency of a small urban area.
They are: data ingestion, data cleaning and data contextualization. Each task consists of
several automated steps that are designed bearing in mind a mobility context . Although
the idea exists that context plays an important role in IoT, it continues to lack careful
examination. Many mobility contexts may exist according to the relevance of taking into
account the contextual history derived from the actual mobility of transit vehicles and their
interaction with urban forms (i.e. streets and intersections).

Our research assumption is that mobility contexts help to explain the phenomena, rein-
forces different perspectives, provides truly understanding of the background of the problems
and may have many dimensions such as spatial, physical, social, and temporal. And as a
result, they are an important requirement, together with scalability and automation to
take into account when designing an IoT-GIS platform. The proposed IoT-GIS platform is
demonstrated with AVL stream data (Automatic Vehicle Location) collected by the Codiac
Transit Agency of the Greater Moncton Area, which serves a small urbanized area in New
Brunswick, Canada. Small transit agencies usually lack resources and have small fleet sizes
and simpler route structuring, making the IoT-GIS platform relevant to improve their abil-
ity to collect data, to coordinate the analytical tasks and access the results, as well as to
monitor operational strategies.

The remainder of this paper is organized as follows. In Section 2, related works in GIS
platforms previously developed for smart transit applications are reviewed and the existing
IoT platforms are described. In Section 3, the IoT-GIS platform is presented, including
the details of the automated tasks, specifications, and requirements. Section 4 is dedicated
to describing the cloud architecture used to implement the IoT-GIS platform. Section 5
describes in detail the experiment of implementing our IoT-GIS platform for the Codiac
Transit Agency. Section 6 discusses both the performance of the proposed platform and the
experiment analysis results. Section 7 concludes the paper and discusses further research.

2. Related work

Small transit agencies tend to have limited resources for facing the challenges of con-
tinually increasing the high quality of the delivered transit services and reducing private
car dependency while ensuring low operational costs, low environmental impact, and safety.
To this end, transit operators and managers need to understand the functioning of their
services to develop strategies for their availability, reliability, and performance. Although
a significant effort toward automating the collection of data has been achieved by transit
agencies, including Automatic Fare Collection (AFC), Automatic Vehicle Location (AVL),
and Generated Transit Feed Specification (GTFS), the actual stream data generated at the
vehicular level continues to be difficult to be retrieved due to its large data volume and the
absence of automated tasks. Traditionally, the platforms have been designed for sending
the stream data to a server, where the data can be later stored in a GIS where further
pre-processing is manually performed and ad-hoc queries are executed by the users of this
platform. Some examples include the SQL database platform integrated with a web inter-

3



face proposed by Pi et al. (2018) that allows users to perform interactive queries to examine
the impact of bus bunching in a transit network performance using metrics about the bus
routes, bus stops and trips obtained from four years of Automated Passenger Counter (APC)
and AVL data. Luo et al. (2018) proposed a PostgreSQL-Matlab platform for carrying a
sequence of pre-processing steps needed to integrate AFC, AVL, and GTFS datasets and
later generating space-time seat occupancy graphs which have provided transit operators
with information about crowding patterns that can be used to improve timetable optimiza-
tion and fleet scheduling. The pre-processing steps are manually performed, and the time
processing of each step can vary significantly depending of the availability of stream data.

Small transit agencies also lack the resources for performing analytical tasks that are
vital for developing a long-range strategic plan or avoiding planning in a reactive manner.
Previous research work has demonstrated the important role of analytical tasks in providing
new insights for large transit agencies. Zhong et al. (2014) have applied a two-step analytical
framework based on a probabilistic Bayesian model combined with IDW function in ArcGIS
to build functions from equivalent daily social activities using data from surveys carried out
every four years and the smart card system generated by the Singapore Land Transport
Authority. Isukapati et al. (2017) demonstrates how descriptive analytics tasks can provide
new insights on the dwell times at bus stops of two sample bus routes provided by Port
Authority of Allengheny County, Pennsylvania. The results can be used for improving
urban traffic signal control when the uncertainty in dwell times at bus stops might result in
delays for the traffic flow. However most of these tasks tasks have not been developed to be
executed in any platform yet, and as Lv et al. (2017) point out that not only data collection
tasks but also analytical tasks will become more automated in the near future.

There is a growing interest and demand to develop IoT platforms that can support au-
tomated analytical tasks, ranging from data collection and pre-processing tasks to analytics
and visualization tasks. Our research work is one step in this direction. A systematic
overview of IoT can be found in several surveys that have been recently published. Some
examples include the survey of Al-Fuqaha et al. (2015) that provides an overview of IoT
enabling technologies, protocols, and applications where authors summarize key elements
to realize the IoT, and point out the need for new IoT platforms that can offer automated
management, data aggregation, and protocol adaptation among different IoT devices. In
contrast, Li et al. (2015) have mainly focused on examining the Service-oriented Architec-
tures(SoA) in IoT, showing that the main research challenges in designing the architecture
of IoT platforms are the nature of heterogeneous, real-time movement of the IoT devices.
Several IoT platforms have also been proposed based on Service-Based IoT Middleware,
Cloud-Based IoT Middleware, and Actor-Based IoT Middleware which are supporting com-
puting services in a cloud environment (Ngu et al. 2017). Gazis (2017) has recently pointed
out the lack of standardization of IoT platforms in terms of services, data, and communica-
tions.

Over 400 IoT platforms have already been proposed to address sensor technologies
and communication networking challenges for supporting supply-chain, manufacturing, and
smart homes applications. Although these research efforts are in progress to design IoT-
based systems (Carrez et al. 2017, Datta et al. 2014, Krco et al. 2014, Lloret et al. 2016,
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Nelson et al. 2017, Sarkar et al. 2014, 2015), most of the research work has been focused
on platforms using fixed IoT devices that are tagged to a specific location, while not many
efforts have attempted to solve the problems in the context of moving IoT devices (Chun
and Park 2015, Gerla et al. 2014, Shibata and Sato 2017, Wu et al. 2015). Our research
work envisages that a transit vehicle will become a moving IoT device in the future, and
IoT-GIS platforms will play an important role in providing new insights in understanding
transit network performances as well as automated tasks for fostering innovative transit
applications.

One example includes the Smart Object platform that demonstrates the feasibility of
supporting real-time monitoring of commodities in a supply chain by attaching RFID tags
to objects such as consumer goods, product parts, pallets, containers, and vehicles. The
RFID readings provide automatic object location and environmental sensors are also used
to add additional information relevant to the context of a particular monitored item (López
et al. 2012). A similar approach was used to design the Virtual Object (VO) platform for
traffic monitoring in digital cities using inductive loop detectors for detecting vehicle passing
or arriving at a certain point (Somov et al. 2013). Both approaches provide a virtual
representation of real-world objects with a corresponding virtual object in the platform.
The concept of VO allows us to deal with the problems of sensor heterogeneity and system
scalability as well as enrich IoT data streams with metadata (i.e. context information).

Kantarci and Mouftah (2014) presents a pioneering research work on the conceptual de-
sign of the MATCS (Mobility-Aware Trustworthy Crowdsourcing) platform by incorporating
user auction procedures based on current location of the users and their estimated disloca-
tion during the crowdsourcing process. Although this platform has not been implemented
yet, the simulated results validate the importance a mobility context has in collecting and
verifying IoT data streams.

In contrast, very few cloud platforms can be found in the literature for supporting analyt-
ical tasks. Sun et al. (2016) proposes the MOMA (Moving Object Map Analytics) platform
for manually performing a list of high performance tasks including GPS noise filtering,
map matching, geo-fencing, contextual map fusion and trajectory pattern learning. Using
a service-oriented architecture, the GPS trajectories were manually enriched by adding at-
tributes such as weather, road type, and traffic condition that were used to build mobility
contexts such as a single trip, personal profiling, and population profiling. Their preliminary
results have pointed out that performance and scalability are the key technical challenges for
improving their platform, especially for building mobility contexts that can handle a large
number of data streams and automated tasks that can support high performance.

The UBICON platform proposed by Atzmueller et al. (2016) is the first attempt to take
into account a social context within an analytical process. Although the tasks were not
automated, the platform is developed for performing data capture, localization and activity
recognition component in which different technologies and open-source tools are used such as
the Sensor Data Collection Framework (SDCF), the WEKA toolkit, the VIKAMINE plat-
form, and the GNU R environment for statistical computing. The social contexts were used
for illustrating the capabilities of different tasks ranging from face-to-face social interactions
to participatory open-sensing. Several applications were sketched by using this platform
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to perform analytical tasks. For example, indoor localization is identified through context
inference using Bluetooth low-energy (BLE) technology or contexts are predicted based on
interpretable class association rules.

In summary, it is important to point out that the first phase in the evolution of IoT has
been focused on the proliferation of devices, protocols, and architectures where the main
research challenges have been related to connectivity, physical infrastructure, sensors, and
hardware configurations. A second phase is taking place where the core research challenges
are shifting to software design, automated analytics, and platform configuration. Our re-
search effort in designing an IoT-GIS platform is somewhere between the first and second
phase, and therefore, it might be vulnerable to major disruptions yet to come due to the
advances in networking and database technologies as has been previous revealed by Verma
et al. (2017).

3. The automated analytical tasks

We propose an IoT-GIS platform focusing on using data streams which are defined as a
sequence of tuples that usually contains attributes such as:

{[T1 = (S1, x1, y1, t1)], [T2 = (S2, x2, y2, t2)], ..., [Tn = (Sn, xn, yn, tn)]}

where

Sn: is a set of attributes (i.e. measurements) obtained from an IoT device;

xn, yn, tn: is the geographical location of an IoT device at the timestamp t when a
measurement has occurred.

The main characteristics of tuples have been previously outlined by Gama and Rodrigues
(2007). They can be described as one of the following:

• Each tuple in a stream arrives online. When the tuples are transported in batches, they
are gathered in discrete packages at periodic intervals of time. An effective platform
begins by prioritizing routing data packages to an automated task.

• A platform has no control over the order in which a tuple arrives within a data package
or across data packages. When a task is automated, the platform used to carry out
the task requires continuous queries. Two types of continuous queries are possible.
First, pre-defined queries can be scheduled and they are one-time queries that can
be provided by a task before any relevant tuple has arrived at the platform. Second,
ad-hoc queries can be issued online and they are not known in advance by a task.
They bring complexity to automating the tasks, and therefore, they were not used in
this paper.

• Tuples are potentially unbounded in size. Ideally, an IoT-GIS platform should sup-
port flexible data rates to make sure any relevant tuple has arrived at the platform.
Unfortunately, current network technologies do not support such a capability.
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Three automated tasks have been designed including (1) data ingestion; (2) data clean-
ing ; and (3) data contextualization. The automation of these tasks is of paramount impor-
tance to streamline large amount of tuples. The data ingestion task consists of retrieving the
data streams from different IoT devices and connecting to a GIS in the cloud platform. The
data cleaning task involves running continuous queries to execute common geo-processing
tasks. Finally, the contextualization task is the most complex task because it contextual-
izes the tuples from the previous tasks by attaching new attributes to each original tuple
according to a specific mobility context. The a-priori knowledge about the nature and scope
of the movement of the IoT devices (i.e. the mobility context) is of paramount importance
to design any automated task because it takes into account the geographical distribution
of IoT devices, their mobility, and the low latency of a communication network. Figure 1
illustrates the overview of the automated analytical tasks.

Figure 1: Automated tasks our IoT-GIS platform.

In our research work, determining a mobility context requires us to make several assump-
tions which are common in the literature of mobility analytics (Doulkeridis and Vlachou
2017, Velt et al. 2017). The first assumption is that the mobility context will be developed
using the concepts of a “trip” at the individual scale and a “network of trips” at the aggre-
gated scale. At the individual scale, a trip taken by a moving IoT device will dictate how
the data streams are acquired, the sensors being used, and the mobility context of the data
being harvested. There are many definitions of a trip, but in our mobility context we define
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a trip as a sequence of tuples which represents the origin, moves, stops, and destination of a
moving IoT device. We do not claim that this definition captures the human mobility con-
text of any IoT devices in the near future, but it can allow us to design the automated tasks
with some reasonable certainty with the available IoT technology today. At the aggregated
scale, a network of trips is needed to represent any trip of a moving IoT device. When the
IoT data are aggregated into groups of trips based on a mobility context, it considerable
reduces the processing time of our automated tasks. To achieve that, our second assumption
is that a cloud computing platform is the most appropriate for implementing our automated
tasks because it provides the flexibility of connecting it to a variety of IoT devices. Finally,
the scalability characteristic of cloud computing allows us to design our automated tasks to
be operated without processing power constraints.

3.1. Data Ingestion

The data ingestion task is known as the undertaking of pushing tuples from different
devices into our IoT-GIS platform. The ingestion task allows an http POST, Wi-Fi and a 3G
connection for rapid retrieval of tuples from the devices themselves as well as a broadcasting
service in which a forever loop of event time windows can be applied. Selecting the time
granularity of an event time window will depend on the selected mobility context. It should
not be determined using the data rate of the IoT devices, since data rates are not useful to
build a mobility context.

There are two advantages of using event time windows. First, they separate the semantics
of program from the real streaming speed of the communication network (e.g. Wi-Fi or 3G).
Hence, historical tuples can be processed, while streaming tuples are continuously produced
within the same task. Moreover, the event time windows also restrict semantically inaccurate
results in the scenario of delays due to network congestion or failure recovery. Second, they
deliver more accurate outcomes, even if the tuples arrive out of their timestamp order.

All the tuples that arrive in the IoT-GIS platform are stored in a PostgreSQL database
according to the a-priory specified event time windows. Although NoSQL databases such
as MongoDB, Cassandra, and HBase are well suited for storing and indexing the tuples,
they might lack the functionality of storing and manipulating geographical information that
is needed to build a mobility context. Moreover, the lack of a database schema of NoSQL
databases may cause a continuous query to fail due to unpredicted application behaviour.
The PostgreSQL database provides a central database schema in our cloud platform, and
a pre-defined query to retrieve the tuples needed for the automated tasks. Moreover, the
PostgreSQL community have added many new features and better performance for big data
use cases including the ability to store unstructured data and add a column on the fly in a
dynamic table (Chihoub and Collet 2016).

In summary, a data package containing a set of unbounded tuples keeps being pushed to
the IoT-GIS platform and stored in a PostgreSQL database which can be queried to retrieve
the tuples using different event time windows, ranging from hour, day, week, month, and
year. In this paper, we have executed a query to retrieve a year of tuples to illustrate the
outcomes of our proposed IoT-GIS platform.
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3.2. Data Cleaning

The data cleaning task is always necessary in order to eliminate inconsistencies and
errors from the stored tuples. Guaranteeing data quality for continuous and high volume of
tuples is a non-trivial task, and performing this task automatically is even more challenging
because IoT devices usually produce a vast amount of noisy data. The task is automatically
initiated using a continuous query that aims to retrieve all the raw tuples in the PostgreSQL
database. Five automated data cleaning steps are designed including (1) removing missing
tuples, (2) removing duplicated tuples, (3) handling missing attribute values, (4) removing
redundant attributes, and (5) removing wrong attribute values. These steps are executed
in conjunction with the pre-defined query running in the cloud platform and they can be
described as one of the following:

• Step 1 - Removing missing tuples: Every data package is expected to arrive accordingly
to the selected event time window (e.g. every 5 seconds, every hour). However, due to
connectivity and/or sensor problems, missing tuples usually occur for a trip, and they
are ignored.

• Step 2 - Removing duplicated tuples: It includes the case when the same tuple is
transmitted twice. In this situation, any duplicated tuple is identified through its
timestamp trace and then removed.

• Step 3 - Handling missing attributes values: S is a set of a finite number of attributes
which is transmitted for each tuple. If the missing attribute value of a tuple is not used
in the further steps, the “N/A” is assigned to this attribute. Otherwise, we delete the
entire tuple.

• Step 4 - Removing redundant attributes: Although S has a fixed number of attributes,
there are cases when a new attribute is added to a tuple during the transport to the
cloud platform. For example, in the case of having a set of 4 attributes, it might occur
that 5 attributes are retrieved instead. In this scenario, the additional attribute is
automatically removed.

• Step 5 - Removing wrong attribute values: A wrong value for an attribute might
occur due to uniqueness violation and misspelling. In this scenario, the data cleaning
task tries to standardize and normalize the wrong value. But if the value cannot be
standardized, the attribute is treated as a missing attribute value case.

Once the data cleaning task is finished, a target data set is automatically created. This
is a cleaned data sample ready to be used by the data contextualization task.

3.3. Data Contextualization

This is the most complex task designed to be automated in our analytical process. Con-
textualization enriches the tuples step by step from the prior data cleaning task by adding
new attributes to each tuple according to a specific mobility context. But before this task
even starts, the tuples need to be sorted in the most effective manner for executing the data
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contextualization steps. Towards this end, the contextualization steps are executed using
the Hadoop MapReduce framework. The Map() phase of MapReduce framework is utilized
to bundle the tuples coming from the previous task into various groups that are later pro-
cessed in a parallel style by the Reduce() phase aiming to execute the data contextualization
steps using a Python script. The key feature of MapReduce is its ability to perform the
processing steps of a contextualization task across an entire cluster of nodes, with each node
processing a partition of the stream tuples.

For this paper, we selected the concept of a trip to illustrate our mobility context. To
this end, the data contextualization task consists of seven automated steps which can be
described as follows:

• Step 1 - Stop/Move Detection: The aim is to determine whether an IoT device is
moving, has stopped off, or has suspended its movement during a trip. In this contex-
tualization, the timestamp t and the geographical coordinates (x, y) of each tuple are
utilized. First, a fixed mobility radius for each IoT device is determined according to
the mobility context of interest. Usually parameters used to determine the threshold
value are speed or a fixed time distance. Second, the Euclidean distance of a trajec-
tory of an IoT device is identified based on two consecutive tuples (i.e. points). If this
distance is larger than the mobility radius, a new attribute which contains the value
“move” is attached to the second tuple. In contrast, if this distance is less than the
threshold, the “stop” attribute value is attached to the second tuple.

• Step 2 - Stop/Move Classification: The aim is to classify the moves and stops of each
trip obtained from the previous step in order to improve our understanding about
their mobility context. Any stop may occur because of an accident, traffic congestion,
picking up passengers at a bus station, or a traffic light of one street intersection. A
new attribute is attached to the original tuple.

• Step 3 - Street Name Annotation: The aim is to annotate the moves and stops accord-
ing to the street nomenclature of a city network. A new attributed is attached to the
original tuple.

• Step 4 - Geographical Feature Annotation: The aim of this step is to annotate the
stops and moves according to a place of interest. Some examples include a bus stop,
a shopping mall, or a hospital. A new attribute is attached to the original tuple.

• Step 5 - Street Intersection Annotation: The aim is to annotate the moves and stops
that occur at the intersections of a street network. A new attribute is attached to the
original tuple.

• Step 6 - Temporal Annotation: The goal of this step is to identify the actual arrival
time and departure at a specific place of interest. A new attribute is attached to the
original tuple.

• Step 7 - Trip Annotation: The aim is to tag each first tuple of a trip as origin and each
last tuple of a trip as destination. The other tuples are then sequentially indexed.
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At the end of the contextualization task, a new data set is generated and stored in the
PostgreSQL database. This data set contains seven new attributes added to the original
set of tuples obtained from the data cleaning task. These attributes represent the mobility
context that characterises the interaction of IoT devices with their surrounding environment
during their trips.

4. Cloud Architecture

Our IoT-GIS platform requires stream processing for supporting the continuous compu-
tation of data flowing through the automated tasks. This allows any tuple that is retrieved
to be processed as soon as it arrives. The only constraint is that the output rate should be
at least similar to the data input rate, mainly to have enough memory to store the data after
each task is performed. Figure 2 provides an overview of the cloud architecture developed
for our IoT-GIS platform. Cloud computing can facilitate massive-scale and complex data
processing by taking advantage of virtualized resources, parallel processing, and data service
integration with scalable data storage that can support the IoT data streams. Indeed, most
of the analytical processes in IoT have been deployed in the cloud due to its flexibility and
efficient resource provisioning (Botta et al. 2016, Cavalcante et al. 2016, Dı́az et al. 2016,
Fortino et al. 2014, Truong and Dustdar 2015, Wang and Ranjan 2015). Two virtual ma-
chines (VM) are leveraged to form the cloud architecture. The VM 1 is used to perform the
data ingestion and data cleaning tasks as well as storing the GTFS and GIS data sets which
are needed for the contextualization task. Moreover, both VM1 and VM2 are combined to
implement a high performance Hadoop cluster for executing the contextualization analytical
task.

4.1. PostgreSQL Specifications and Requirements

The database in the cloud has been designed to manage and store not only the raw tuples
being generated by the IoT devices but also to integrate geospatial data provided as input
to the automated tasks. The data sets used were the open spatial GIS transit network and
the spatial data from the GTFS package. Therefore, one of the main requirements for our
database is that it should be a fully ACID (Atomicity, Consistency, Isolation, Durability)
compliant database with flexibility and high scalability in terms of geographical distribution.
The PostgreSQL 9.5.3 database was deployed on a virtual machine (CentOS 7.0 x64, In-
tel(R) Xeon(R) CPU E5-2650 v2 @ 2.60GHz, 8 CPU cores, 29.3 GB RAM, 859 GB Disk).
PostgreSQL was selected not only because it supports storage of binary large objects but
also because it provides a native programming interface for Python that is our language of
choice for implementing the algorithms of the automated tasks. We have also used PostGIS
which is an extension to the PostgreSQL, to support geo-processing needed for several steps
of the contextualization task.

4.2. Hadoop Specifications and Requirements

Hadoop was primarily used for supporting the contextualization task. It is a Java-based
open-source software framework that supports distributed storage and processing of massive
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Figure 2: Overview of the cloud architecture developed for our IoT-GIS platform.

datasets across the clusters of commodity servers using the MapReduce framework (Dean
and Ghemawat 2010). Hadoop was selected because it is designed to run applications on
systems that have the scalability from a single virtual machine to many thousands of ones,
with a high level of fault tolerance. The distributed file system (HDFS) facilitates rapid
data transfer rates among machines and allows the system to keep working uninterrupted
in case of a server failure. It divides HDFS data into large blocks that can be handled on
many servers in the cluster. To handle the data, the Hadoop framework transfers packaged
code for machines to process in a parallel manner, based on the data blocks each machine
needs to process.

In our platform, a Hadoop cluster includes one master machine and one slave machine
that were deployed on the Compute Canada West Cloud resource following the specifications
listed in Table 1.

The main requirement for the cloud platform is to support the MapReduce framework
for the sorting of the tuples of the IoT devices as illustrated in Figure 3.

The MapReduce framework basically performs two functions. First, the Map function
divides the HDFS data set obtained from the cleaning data task into key-value pairs then
shuffles them into many small subsets with the same key. The key-value pairs consist of
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Hadoop cluster

Master

Hostname: first-hung.westcloud
OS: CentOS 7.0 (x86 64)
CPU: Intel(R) Xeon(R) CPU E5-2650 v2 @ 2.60GHz
Number of CPU core: 8
RAM: 29.3 GB
Disk: 859 GB
IPv4 Address: 192.168.14.60

Slave

Hostname: third-hung.westcloud
OS: CentOS 7.0 (x86 64)
CPU: Intel(R) Xeon(R) CPU E5-2650 v2 @ 2.60GHz
Number of CPU core: 8
RAM: 29.3 GB
Disk: 859 GB
IPv4 Address: 192.168.14.67

Table 1: Overview of the Hadoop Specifications.

Figure 3: Logical view of the contextualization steps using MapReduce.

any set of attributes that can uniquely identify a trip of an IoT device. Second, the map
function maps this input data to a set of transitional key-value pairs. After executing the
map function, the result is key-value pairs in which the value is the list of many sorted tuples
T that have the same key as follows:

Map(T1, ..., Tn)→ [K; list(sorted subset(T ))]
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The Reduce function takes these subsets and applies the contextualization steps in a parallel
manner to produce a single result set. The Reduce function reduces a set of intermediate
values which share a key K to a smaller set of values list(F ) as follows:

Reduce([K; list(sorted subset(T ))])→ list(F )

The input of the Reduce function is used to partition the tuples into groups having the
same key-value pairs. At the end of the Reduce phase, all output of the Reduce function is
grouped into a list of processed tuples of the form

F1(S1, a1, a2, a3, a4, a5, a6, a7);

F2(S2, a1, a2, a3, a4, a5, a6, a7);
...

Fn(Sn, a1, a2, a3, a4, a5, a6, a7);

where a1, a2, a3, a4, a5, a6, a7 are the new attributes.

5. Experiment: Smart Transit for Small Urban Areas

Small communities are usually confronted with unique challenges when providing transit
services. Transit agencies typically serve populations that live in small urban areas with no
congestion and plenty of parking facilities, and they are usually accustomed to short travel
times. For our mobility context, we have selected the Codiac Transit that serves three
communities: Moncton, Dieppe, and Riverview with a population of 130,000. Households
pay $11 per month on average towards the operation of transit services. The latest available
statistics show that 2,307,725 passengers used Codiac transit services in 2016 (Codiac 2018).

Codiac Transit operates 30 bus routes from Monday to Saturday; some of them provide
evening and Sunday services. Despite the fact that all buses of the fleet are equipped with
GPS, allowing transit managers to know the exact location of any bus every 5 seconds, every
time Codiac Transit considers adjusting a route or launching a new route, they physically
go out with a bus to pace. This operational undertaking is not ideal since Codiac Transit
like most small transit agencies has limited human resources that can be devoted to perform
such a task. Therefore, this mobility context was selected to illustrate that it is possible to
accurately and automatically compute the pace of a route using our IoT-GIS platform. Fig-
ure 4 shows how data streams generated on the buses can be sent to our cloud infrastructure
where the automated tasks are executed for building the mobility context. At the individual
scale, every trip is automatically created by adding information about its actual origin, stops
(e.g. stopover, and suspension of movement), moves (e.g. passing and running), destination,
bus route, street names, and duration. At the aggregated scale, the trips are sorted out in
chronological order and real-world patterns emerge showing the complex behaviour of the
Codiac transit network.

Every bus in the Codiac Transit network is considered as an IoT device for the purpose
of describing our mobility context. In total, data was collected for 800 trips containing 642
bus stations belonging to the 30 bus routes during the period of one year. The geographical
distribution of the trip network is visualized in Figure 5.
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Figure 4: Overview of our IoT-GIS platform developed for Codiac Transit.

Figure 5: The Codiac Transit Network.

5.1. Data Ingestion Task

The tuples have been continuously pushed from the running buses to our PostgreSQL
database on the west cloud of Compute Canada since 01/06/2016. We retrieved a year
of streaming data from 01/06/2016 to 25/05/2017 to explain the implementation of our
mobility context. Each tuple has 17 attributes described as one of the following:

1. vlr id: The ID of the data point in the vehicle location reports table

2. route id vlr: The route ID in the vehicle location reports table
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3. route name: The route name

4. route id rta: The route ID in the route transit authority table

5. route nickname: The abbreviation of the route

6. trip id br: The trip ID in the bid route table

7. transit authority service time id: Transit authority service time ID

8. trip id tta: Transit authority trip ID

9. trip start: Start time of the trip

10. trip finish: Finish time of the trip

11. vehicle id vab: Vehicle ID

12. vehicle id vlr: Vehicle ID in the vehicle location reports table

13. vehicle id vlr ta: The descriptive name of the bus

14. bdescription: Bus description

15. lat: Latitude

16. lng: Longitude

17. timestamp: Timestamp of the data point

The data ingestion task is triggered every 5 seconds, and after a period of one year,
there were 65,097,658 tuples stored in the PostgreSQL database that were used for the data
cleaning task. Algorithm 1 provides the pseudo code for the execution of the data ingestion
task.

Algorithm 1: Pseudo-code developed to perform the Data Ingestion Task.

Data: Set of G = (T1, T2, T3, ...) such that Ti = (Si, xi, yi, ti) is a data tuple streamed
every 5 seconds.

Result: G = (T1, T2, T3, ...) with Ti ⊆ G such that G was stored in PostgreSQL
database in the Cloud.

1 Initializing database;
2 while True do

// run the loop forever

3 establish connection;
4 read(G);
5 forall Ti ⊆ G do
6 if Ti valid then
7 insert(Ti) to the database;
8 print “Successful” ;

9 else
10 print “Failed” ;
11 pass;

12 end

13 end
14 delay(5); // ingest data streams every 5 seconds

15 end
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5.2. Data Cleaning Task

The data cleaning task is triggered by a continuous query using a time window (i.e. the
query runs automatically every 5 seconds) as shown in Table 2.

Description SQL Statement

Get all raw tuples given a time period
SELECT *
FROM moncton data
WHERE gps timestamp BETWEEN ‘2016-06-01’ AND ‘2017-05-25’

Table 2: SQL Statement implemented for the cleaning task.

Errors and inconsistencies information needed to be corrected and filtered out. In the case
of missing tuples, 480,000 tuples were deleted accounting for 0.75% of total of 65,097,658 tu-
ples, and because 6,000 bus trips had more than 100 missing tuples, they have been removed
as well. Furthermore, around 6,000 tuples were standardized due to the cases of redundant
attributes, missing attribute values, and wrong attribute values. Finally, 38,167,787 tuples
were detected to be duplicated tuples, and consequently, they have been deleted as well. At
the end, the cleaning data file consisted of 26,443,871 tuples which were used for the data
contextualization task. Algorithm 2 provides the pseudo code developed to perform the data
cleaning task.

Algorithm 2: Python pseudo-code developed to perform the data cleaning task.

Data: Set of G = (T1, T2, T3, ...) such that Ti = (Si, xi, yi, ti) is the raw tuple queried
from database

Result: U = (Ti, ...) with Ti is cleaned and U ⊆ G is cleaned as well
1 Function Main(G):
2 forall Ti ⊆ G do
3 extract Trip Ki from G (Ki= Set of different Ti);
4 foreach Ki ⊆ G do
5 data 1 = clean missing tuple(Ki);
6 data 2 = fix missing attribute(data 1);
7 data 3 = fix wrong attribute(data 2);
8 data 4 = eliminate redundant attribute(data 3);
9 D = eliminate duplicated tuple(data 4);

10 end
11 U = U.append(D);

12 end
13 return U ;

5.3. Data Contextualization Task

The input data for this task consist of a set of cleaned tuples U = (T1, T2, ...) for a
one-year period. However these tuples require to be ordered by trip (trip id br), bus route
(route id vlr), and date (timestamp). This ordering is important to produce a set of con-
textualized tuples Q = (Ti, ...) such that each tuple in the set Q is ordered for performing
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posteriori computations such as the Euclidean distances for detecting stops and moves. To
this end, the MapReduce framework was used (Figure 3). The map function was responsible
for selecting and ordering tuples into many small subsets in a parallel manner. All tuples
with the same Route ID, same Trip ID, and same Date were grouped and sorted in a chrono-
logical order. Once the map function finished, the reduce function was used to implement
the steps of the contextualization task. Algorithm 3 provides the pseudo-code developed to
perform the data cleaning task.

Algorithm 3: Python code developed to perform the data contextualization steps.

Data: Set of U = (T1, T2, T3, ...) such that Ti = (Si, xi, yi, ti) is the cleaned tuples
Result: Q = (Ti, ...) such that Ti = (Si, xi, yi, ti, context1, ...contextn) is the

contextualized tuples
1 Function Mapper(U):
2 foreach Ti ⊆ U do
3 key = Ti(RouteID, TripID,Date);
4 value = Ti;
5 Zi = shuffle(key, value); /* sort all tuples with the same Route, same

Trip and same Date to many small subsets Zi */

6 end
7 return < Ti(RouteID,TripID,Date), Zi >;

8

9 Initialize Q = Empty;
10 Function Reducer(< Ti(RouteID,TripID,Date), Zi >):
11 foreach key Ti(RouteID,TripID,Date) do
12 Initialize R = Empty;
13 forall tuple Ti ⊆ Zi do
14 var1= stop move detection(Ti);
15 var2= classification(var1);
16 var3= street name annotation(var2);
17 var4= bus stop identification(var3);
18 var5= intersection identification(var4);
19 var6= arrival departure identification(var5);
20 var7=od identification(var6);

/* var7 = (Si, xi, yi, ti, context1, ...context7) */

21 R = R.append(var7)

22 end
23 Q = Q.append(R)

24 end
25 return Q;

Figure 6 illustrates the contextualized steps for the bus trip 51-12 of the route 51 on the
date 15-06-2016. This particular trip was randomly selected for explaining the outcomes of
the contextualization task.
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Figure 6: Overview of the automated steps designed for the data contextualization task.

Step 1 - Stop/Move Detection: For determining whether a bus was moving or had stopped
off or had suspended its movement, an empirical radius value of 15 metres was selected
to identify moves and stops. The Euclidean distance was also determined based on two
consecutive tuples, and if this distance was larger than 15 metres, a new attribute which
contains the value “move” was attached to the second tuple. In contrast, if this distance
was less than 15 metres, the “stop” attribute value is attached to the second tuple. Figure
7(a) shows the contextualized results of Step 1.

Step 2 - Stop/Move Classification: This step was carried out by adding one new attribute
which contained one of the following values:

• Running: when a bus is running on a street segment.

• Passing: when a bus passes a bus station because no passengers were waiting to be
dropped off or get on.

• Suspension of movement: It may occur due to an intersection, stop sign, accident, or
traffic jam.

• Stopover: when a bus stops at a bus station for dropping off or picking up passengers.

First, a query was executed to retrieve the geographical location of all the bus stations of
a bus route from the PostgreSQL database (Table 3). This information was available from
the GTFS data previously stored in the PostgreSQL database.

Afterwards, the algorithm created a circular zone with a radius of 30m for each bus
station. The stops which are located inside the buffer are classified as “stopovers”; otherwise,
they were classified as “suspension of movement”. Moreover, the moves which were located
inside the buffer were classified as “passing”; otherwise they were classified as “running”
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Description SQL Statement

Get a list with all bus stations

SELECT trip id, stop id,
stop sequence, depart return, change direction, stop lat, stop lng
FROM moncton gtfs dim
WHERE trip id = ‘trip’
ORDER BY stop sequence ASC

Table 3: SQL Continuous query for the Stop/Move Classification Step.

on a street. In this step, the moves and stops belonging to this bus trip were classified as
running, passing, suspension of movement, and stopover. The classification results of this
step are illustrated in Figure 7(b).

(a) Stop/Move Detection. (b) Stop/Move Classification.

Figure 7: Results for one trip of the bus route 51.

Step 3 - Street Name Annotation: For this step, a query was designed to automatically
retrieve the names of the street where a move or stop was located at (Table 4). Therefore,
the GIS layer already stored in the PostgreSQL database was used for the contextualization.
This was not a non-trivial step because the geographical coordinates of the stops and moves
were obtained from GPS signals which can range from 10m to 100m accuracy in urban areas
(Salarian et al. 2015). Using a grid-based buffer zone in PostGIS played an important role
in indexing which street segment any cell belongs to, after localizing the moves and stops
within a cell, and consequently, identifying the street name.

The GIS layer containing a 30m buffer zone along each bus route line of the Codiac
transit network was created. Table 5 provides query statements to create the geographical
grid cells for each bus route using bus route 51 as an example. First, a square grid of 10m
cell is created using a geo-spatial query as reference layer and stored in the PostgreSQL
database. Second, a query is used to retrieve only the square cells within the 30m radius
from the street segments belonging to a bus route. The results of the query are stored in
a new geo-spatial table in our database. Finally, we query the GTFS table to get the list
street names of the bus route and assign the street name for each square cell (See Figure
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Description SQL Statement

Get a list with all street segments

SELECT nearest street
FROM route “+line+” grid AS g
WHERE
ST SetSRID(ST MakePoint“ +str(point)+ ”, 4326) &&
.geom lat lon

Table 4: Continuous query for the Street Name Annotation Step.

8(a)).

SQL Statement

– Create a table specifically for each route that holds the grid cells
DROP TABLE IF EXISTS route 51 grid;

– Create the table for the route from those grid cells within a 30m radius of the road
CREATE TABLE route 51 grid AS
(SELECT * From moncton grid 10m AS m
WHERE ST DWithin((SELECT geom lat lon FROM bus routes
WHERE route id = ‘51’), m.geom centroid, 30, false));

CREATE INDEX geom centroid 51 index ON route 51 grid USING GIST (geom centroid);
CREATE INDEX geom 51 index ON route 51 grid USING GIST (geom);
CREATE INDEX geom lat lon 51 index ON route 51 grid USING GIST (geom lat lon);

– Import the annotated bus lines
ALTER TABLE route 51 grid ADD nearest street character varying(50);
UPDATE route 51 grid SET nearest street = (
SELECT s.stname
FROM line51 streetnames as s
ORDER BYgeom centroid <->ST Transform(s.geom, 4326) LIMIT 1);

Table 5: Continuous queries used for creating the grid cells.

Figure 8 shows an example of the grid-based buffer zone used for tagging the street names
for one trip of bus route 51. In this case, it is possible to see that the moving bus has not
followed the assigned bus route (See yellow points on the street block on the right in Figure
8). This might have occurred due to an accident, road construction, or any other event
that required the driver to drive on different street segments. In the case that a moving
bus does not follow the designated street segment, the algorithm generates the “wrong street
segment” value. Such a problem was not foreseen by our automated task. More research
work is needed to determine how to deal with unexpected annotation errors in an automated
way.
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(a) (b)

Figure 8: Example of the 30m buffer zone for executing the street name annotation step.

Step 4 - Geographical Feature Annotation: The next step is to tag a bus station id to each
tuple containing the attribute values equal to stopover and passing. This is an important
step to provide a link with the bus station id information available from the GTFS data.
This was achieved by creating a circular zone of a 30m radius around each bus station of
a transit network, and matching it with the stop (i.e. stopover and passing) location of a
moving bus (Figure 9(a)). It is important to point out that the algorithm also needs to verify
the direction of a moving bus (e.g. eastbound and westbound) in order to identify the bus
station where a stopover/passing was actually located. We selected a tuple located at the
middle of a bus route to use it as a reference point for identifying the direction of a moving
bus. Each stop can be then annotated using “outbound” and “return” values (Figure 9(b)).
Using the GTFS data stored in the PostgreSQL database, the location of a bus station is
compared with an actual stop of a moving bus (Figure 9).

Step 5 - Street Intersection Annotation: The next step was to tag an intersection id to
each tuple. This step starts with a continuous query used to select from the PostgreSQL
database all the intersections (Table 6).

Description SQL Statement

Get a list with all street intersections
SELECT *
FROM moncton intersection
WHERE route id = ‘route’;

Table 6: Continuous query for the Street Intersection Annotation Step.

The algorithm creates a circular zone with a radius of 30m for each street intersection.
The tuples containing stops and moves that were located inside the circular zone were tagged
with the intersection id. Otherwise, the NULL value is used (Figure 10).

Step 6 - Temporal Annotation: The aim of the next step was to determine the actual
arrival and departure time of a moving bus for dropping off or picking up passengers. In this
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(a) (b)

Figure 9: Results of the bus stop identification step for one trip of bus route 51.

Figure 10: Results of the intersections identification step for one trip of bus route 51.

case, the algorithm verifies for the timestamp of the first stopover within the circular zone
of 30m radius around each bus station, and considers it as the actual arrival time. Similarly,
the timestamp of the last stopover within the circular zone is considered the departure time
(Figure 11(a)). This step can be improved if automatic passenger counters (APCs) are used
in a transit network because they provide information about passenger activity on bus trip
time.
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Step 7 - Trip Annotation: Finally, the last step was to tag each first tuple of a bus trip
as origin, and each last tuple of a bus trip as destination (Figure 11(b)).

(a) (b)

Figure 11: Results from steps 6 and 7 of the contextualization task.

6. Discussion of the Results

The subsections below analyze several aspects of the IoT-GIS platform performance as
well as the analysis of the mobility context to support smart transit application in the small
urban areas. The first one evaluates computing performance of the analytical tasks run
on the IoT-GIS platform based on the processing time metric. The second set of analyses
focuses on many aspects to improve service quality of the smart transit application, including
service coverage, pace behavioural, congestion patterns, and route connections.

6.1. Overall Computing Performance of the IoT-GIS Platform

The section evaluates the computing performance of the IoT-GIS platform. The data
ingestion task was performed every 5 seconds achieving a performance latency near to 0.0
ms. Low latency processing is key when running the data ingestion task, and this could be
achieved by optimizing algorithms to minimize the impact of disk I/O and the use of faster
networking. Any delay in the execution of this task will have an impact on the execution of
the other automated tasks in our IoT-GIS platform. Figure 12 shows the total processing
time to execute the data cleaning task using the data streams gathered for one day, one
week, two-week, and one month periods. Three bus routes having different trip frequency
scheduling, high (Bus Route 51), medium (Bus Route 61), and low (Bus Route 80), were
selected for this comparison. As we can see, the processing time varies according to the type
of route and number of data streams.

Aiming to evaluate the automatic batch processing of the data contextualization task
using MapReduce, two datasets were extracted from the cleaned tuples to run in Hadoop.
The first dataset A contains the 12.75 million cleaned tuples from 01/06/2016 to 15/12/2016.
The second data set B contains 13.69 million cleaned tuples from 16/12/2016 to 25/05/2017.
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Figure 12: The measured cleaning times of 3 sample bus routes (51, 61, 80) operating in different areas over
different time windows.

Figure 13 shows the processing time for all phases including map phase, shuffle phase, and
reduce phase. Notably, the Reduce processing time is much longer than Map processing time
because the Reduce phase runs all the data contextualization steps while the Map phase
mainly sorts tuples into separate cluster of the same bus route.

Figure 13: The measured processing times obtained from the MapReduce framework.

6.2. Experiment Evaluation

Table 7 provides an overview of the total number of tuples that have been contextualized
according to our mobility context. In total, 82,044 trips have been processed by the analytical
tasks and as a result, they have been stored in the PostgreSQL database. It is worth noticing
that the total number of trips can vary significantly according to the bus routes, from 129
up to 10,263 trips, showing the high scalability of our proposed approach. Moreover, the
total number of tuples that have been contextualized can also vary from, for example, 32,541
tuples annotated as “Move” for bus route 60LT to 2,049,041 tuples annotated as “Move”
for the bus route 51.

With the statistics at hand, new insights have emerged about the patterns of the different
paces of the bus routes of the Codiac transit network that point out a variety of transit
improvements, infrastructure enhancements, and ridership strategies. First, the highest bus
stop activity was found in the 52 bus route which is a a route with 20 bus stations and
running in approximately a circular path in downtown Moncton. With 892,585 stopovers
against to only 71,043 cases of buses passing a bus station, it reveals a captive ridership
for this bus route (92% of usage pattern). However, the high number of cases of movement
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MOBILITY CONTEXT

BUS ROUTE Moves Stops Running Passing Stopover
Movement
suspended

Trips

50 661,373 552,356 643,592 17,781 268,294 284,062 4,270
50S 45,809 35,820 44,755 1,054 13,113 22,707 301
51 2,049,041 2,135,951 1,779,599 269,442 888,435 1,247,516 10,263
52 1,359,354 2,079,425 1,288,311 71,043 892,585 1,186,840 9,900
60 744,855 579,926 608,990 135,865 362,600 217,326 4,591
60LT 32,541 9,648 27,903 4,638 2,345 7,303 129
61 907,851 562,502 815,458 92,393 262,306 300,196 5,133
61B 493,097 300,222 491,805 1,292 91,043 209,179 2,884
62 966,933 462,028 862,076 104,857 218,922 243,106 5,039
63 1,073,340 429,122 944,673 128,667 219,738 209,384 5,217
64 868,025 621,854 707,958 160,067 252,693 369,161 5,246
64B 177,181 98,161 157,832 19,349 33,207 64,954 1,011
65 810,943 624,252 707,095 103,848 211,322 412,930 5,085
66 320,882 117,009 294,982 25,900 22,079 94,930 936
67 346,419 138,161 305,164 41,255 30,794 107,367 1,774
68 359,649 151,026 306,361 53,288 36,722 114,304 1,855
70 350,666 223,059 331,537 19,129 109,925 113,134 2,033
71 363,895 242,956 326,833 37,062 54,591 188,365 2,159
80 235,039 106,009 206,429 28,610 18,658 87,351 1,174
8081c1 185,254 90,095 163,520 21,734 37,506 52,589 478
81 728,384 398,293 650,614 77,770 240,081 158,212 1,966
93 616,593 295,629 566,486 50,107 91,111 204,518 3,077
939495 11,346 1,804 10,552 794 344 1,460 40
94 833,145 390,926 760,908 72,237 161,111 229,815 4,578
95 541,689 289,693 494,189 47,500 114,486 175,207 2,905

Table 7: Contextual statistics for the Codiac transit network.

suspension (1,186,840 or 61%) indicates the need for signal synchronization and bus priority
on the Main Street where this bus route operates. In contrast, the feeder route 51 having 53
bus stations shows a similar pace behaviour in terms of total number of stopovers (888,435),
but in this case, having a much higher number of passing events (269,442 or 23%). This
might be an indication of bus stations that are not being utilized by the catchment ridership
area, mainly because this service is serving the disadvantaged and the elderly.

Second, the results also reveal the bus routes where there is a larger number of passing
events in relation to stopovers. This pace behaviour emerges from the bus routes serving
remote areas of the metropolitan region and the Codiac agency must entice non-captive riders
with improved levels of service or other improvements. They are bus route 66 serving the
north region of Moncton, bus route 67 serving the Industrial Park of Moncton, bus route
68 serving the rural area of Moncton towards Salisbury, and finally bus route 80 serving
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Riverview. Moreover, all these routes present a moderate number of movement suspensions,
in particular bus routes 67 and 68 which have similar suspension patterns of 31% and 32%
respectively. In this case, both services have to cross Highway 15, requiring an innovative
strategy to optimize these services given this network infrastructure constraint.

Third, Table 7 also shows the pace behaviour of two new bus routes envisaged for merging
routes 80 and 81, as well as merging bus routes 93, 94, and 95. Figure 14 illustrates how the
routes have been changed. These new routes have been operated for only one trip a day for
a total of 40 days. It is interesting to point out that new route 80/81 has shown a ridership
improvement due to an increase of the number of stopovers of old route 80. Conversely, this
is not the case for new route 93-94-95, since there has not been an increase of the number
of stopover.
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(a) (b)

(c) (d)

Figure 14: Illustration of the old and new bus routes: (a) Bus route 80 and 81. (b) Merged bus route 8081.
(c) Bus route 93,94, and 95. (d) Merged bus route 939495.

Finally, the Pace Behavioural Driving Index (PBDI) is computed for each bus route as:

P̂BDI = NORM

(∑
Si +

∑
Di∑

Ri +
∑

Pi

)
Where:∑

Si: is the total number of stopovers.∑
Di: is the total number of movement suspended.∑
Ri: is the total number of running.∑
Pi: is the total number of passing.

In order to classify the traffic flow as follows:
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• from 0 to <= 0.29484388 : no traffic

• > 0.29484388 to <= 0.3574634 : unblocked flow

• > 0.3574634 to <= 0.46832302 : optimal flow

• > 0.46832302 to 0.999 : congested flow

Table 8 shows the results for each bus route. This index can be used by transit managers
to identify the bus routes that maximize the passenger carrying capacity of existing corridors,
streamline transit services, and improve access to the transit system.

Bus Route Normalized Pace Behaviour Driving Index Traffic Flow
939495 0.10394008 no traffic
60LT 0.19381871 no traffic
66 0.23837638 no traffic
67 0.26071923 no traffic
63 0.26135618 no traffic
68 0.27451253 no traffic
80 0.29484388 no traffic

94 0.30673496 unblocked flow
62 0.31236418 unblocked flow
93 0.31342797 unblocked flow
8081c1 0.31792333 unblocked flow
95 0.34960472 unblocked flow
81 0.3574634 unblocked flow

64B 0.36216888 optimal flow
61B 0.39801502 optimal flow
61 0.40504083 optimal flow
70 0.4158296 optimal flow
71 0.43645638 optimal flow
64 0.46832302 optimal flow

65 0.50322119 congested flow
60 0.50896762 congested flow
50S 0.51116849 congested flow
50 0.54596138 congested flow
51 0.68144364 congested flow
52 0.999 congested flow

Table 8: The overview of Pace Behavioural Driving Index of each route in the transit network.

For the evaluation of these results, we have examined the monthly number of total stops
and moves that have been computed for bus route 51. Table 9 shows the similar patterns
encountered for “stops” and “moves”, having the highest peaks in the months of December
and March.

Moreover, congestion patterns have also been inferred by looking at the occurrence of
“stops” and “moves” at different street segments. Figure 15 shows that the highest number
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Jun-16 Jul-16 Aug-16 Oct-16 Nov-16 Dec-16 Jan-17 Feb-17 Mar-17 Apr-17 May-17

Stop 171,503 13,760 3,687 48,259 166,013 378,158 225,701 180,005 349,587 303,612 280,513
Move 160,543 16,336 4,697 58,568 153,390 385,446 216,495 155,427 354,073 285,827 245,907

Passing 20,433 2,727 793 9,012 18,990 49,826 27,785 20,748 49,129 41,756 35,282
Movement suspend 89,117 7,501 1,976 35,320 107,572 224,933 136,093 111,212 209,068 181,363 175,555
Running 140,110 13,609 3,904 49,556 134,400 347,952 188,710 143,157 321,316 258,846 224,184
Stopover 82,386 6,259 1,711 12,939 58,441 168,378 89,608 77,648 157,141 137,805 120,381

Table 9: Monthly total number of stops and moves for bus route 51.

of stops of bus route 51 have occurred at Plaza and Main Street probably due to traffic and
weather conditions, meanwhile the Weldon St. and Mountain St. have a larger number of
“moves”.

Figure 15: Overview of the total number of stops and moves of all trips of bus route 51.

Furthermore, the most congested intersections were found by looking at the the total
number of the suspension of movement for bus route 51. Figure 16 shows the most congested
intersections as being Intersection ID 778: (Birchmount & Mountain), Intersection ID 2215:
(High & Mountain), Intersection ID 1592: (Maplelon & Mountain), Intersection ID 2836:
(Mountain & Vaughan Harvey).

Transit vehicles require the synchronization of urban traffic signals since their suspension
of movement at the intersections might cause delays. Figure 17 illustrates the location of
the intersections that have the most impact on time adherence for bus route 51. This
information shows a need for synchronization among these intersections

Despite the fact that 51 is the most used bus route in the network, Figure 18 shows while
five bus stops near downtown were very busy, over 10 bus stops were unlikely to stop to
pick up passengers, and 9 bus stops have not been used for a period of one year. According
to this analytical result, the allocated resource for the bus stops need to be optimized to
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Figure 16: Total number of stops (suspension of movement) per intersection for all trips of the bus route 51.

Figure 17: The movement suspended pattern along the bus route 51.

eliminate the redundant bus stops along this bus route.
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Figure 18: Total number of stopovers at each bus stop for all trips of the bus route 51.

7. Conclusions

Developing an IoT-GIS platform for supporting automated tasks requires an understand-
ing of the structure of data streams (i.e. sequence of tuples) and communication network
together with the cloud architecture needed for running the tasks. This is a challenging pro-
cess, mainly because any automated analytical task will consist of many automated steps
that rely on the selected mobility context. In this paper we have used the Codiac transit
network to describe a mobility context that illustrates how pace driving behaviour can be
computed and routing alternatives can be evaluated to improve the average speed of service.
Our IoT-GIS platform provides operational information to small transit agencies despite
the disadvantage of not having APC and AFC data. The platform has also the potential
to be used by small agencies that tend to have limited staff available to develop dedicated
programs for analysing the data to conduct their strategic planning process. Other mobility
contexts where we could apply our IoT-GIS platform include autonomous vehicles networks
using V2X communication for improving safety.

Our IoT-GIS platform has contextualized the raw data to show that it is possible to
explore the semantics of a mobility context as well. However, our approach requires high
performance computing power to support all the automated tasks, especially the contex-
tualization task. Analytics performed over contextualized streaming data could potentially
revolutionize transit network services that will be able to adapt at near real time to current
or expected mobility contexts, implementing real-time operation controls and recommender
systems. The outcomes from the data cleaning task indicate that it is not worth to send
all the data streams to the cloud since most of them will not be used in the contextual-
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ization task. Almost half of the tuples used in our implementation were deleted during
the data cleaning task. This implies that a significant number of moves and stops will
not be used and could lead to errors and bias in the further analysis. Therefore, other
computing architectures such as mobile fog computing might be more appropriate for per-
forming the data cleaning task at the edge of the network, rather than the cloud. Mobile
fog computing is defined as “a scenario where a huge number of heterogeneous (wireless and
sometimes autonomous) ubiquitous and decentralized devices communicate and potentially
cooperate among them and with the network to perform storage and processing tasks without
the intervention of third-parties” (Vaquero and Rodero-Merino 2014). Data cleaning tasks
can be designed for running in a sandboxed environment at a fog node. This will help to
incorporate a new step in the data digestion task to handle late tuple arrivals. Future re-
search work includes implementing the data cleaning task at a mobile fog node which would
be installed inside a vehicle of a transit network.

Finally, our IoT-GIS platform has an enormous potential to be used to calculate transit
performance indicators that have been previously computed using expensive transit de-
mand models. Some examples include daily trip pattern construction for service adjustment
planning, schedule coordination planning as well as in links re-routing and on-time transit
performance improvement. While researchers have recognized the potential of using GPS
coordinates for transit performance monitoring, there has been limited research in dealing
with the practical considerations associated with the analysis of massive amounts of transit
feeds. It is also important to point out that the 30m circular zones might not be a universal
mobility radius to be adopted by any transit network. More research work is needed to iden-
tify the optimal radius value for the circular zones used for bus stations and intersections.
Our IoT-GIS platform provides a unique approach to enable online applications for transit
performance analysis in the near future.
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